Loading…

Volatile organic compounds from exhaled breath in schizophrenia

This study aims to find out whether volatile organic compounds (VOCs) from exhaled breath differ significantly between patients with schizophrenia and healthy controls and whether it might be possible to create an algorithm that can predict the likelihood of suffering from schizophrenia. To test thi...

Full description

Saved in:
Bibliographic Details
Published in:The world journal of biological psychiatry 2022-11, Vol.23 (10), p.773-784
Main Authors: Jiang, Carina, Dobrowolny, Henrik, Gescher, Dorothee Maria, Meyer-Lotz, Gabriela, Steiner, Johann, Hoeschen, Christoph, Frodl, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-dd38623dcdb5a3b5ad3242534e2f1a20b2264bf6c67cc44e1760f6127391cdf73
cites cdi_FETCH-LOGICAL-c413t-dd38623dcdb5a3b5ad3242534e2f1a20b2264bf6c67cc44e1760f6127391cdf73
container_end_page 784
container_issue 10
container_start_page 773
container_title The world journal of biological psychiatry
container_volume 23
creator Jiang, Carina
Dobrowolny, Henrik
Gescher, Dorothee Maria
Meyer-Lotz, Gabriela
Steiner, Johann
Hoeschen, Christoph
Frodl, Thomas
description This study aims to find out whether volatile organic compounds (VOCs) from exhaled breath differ significantly between patients with schizophrenia and healthy controls and whether it might be possible to create an algorithm that can predict the likelihood of suffering from schizophrenia. To test this theory, a group of patients with clinically diagnosed acute schizophrenia as well as a healthy comparison group has been investigated, which have given breath samples during awakening response right after awakening, after 30 min and after 60 min. The VOCs were measured using Proton-Transfer-Reaction Mass Spectrometry. By applying bootstrap with mixed model analysis (n = 1000), we detected 10 signatures (m/z 39, 40, 59, 60, 69, 70, 74, 85, 88 and 90) showing reduced concentration in patients with schizophrenia compared to healthy controls. These could safely discriminate patients and controls and were not influenced by smoking. Logistic regression forward method achieved an area under the receiver operating characteristic curve (AUC) of 0.91 and an accuracy of 82% and a machine learning approach with bartMachine an AUC of 0.96 and an accuracy of 91%. Breath gas analysis is easy to apply, well tolerated and seems to be a promising candidate for further studies on diagnostic and predictive clinical utility.
doi_str_mv 10.1080/15622975.2022.2040052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15622975_2022_2040052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629385262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-dd38623dcdb5a3b5ad3242534e2f1a20b2264bf6c67cc44e1760f6127391cdf73</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwCKCMLCn2sRM3E6CKm1SJBVgtxxdilMTBTgTl6UnVlpHhXIbvnF_6EDoneE7wAl-RLAcoeDYHDDA2hnEGB2hKFoSlhBE4HPeRSTfQBJ3E-IEx5UVBjtGEZoQTzPkUXb_5WvauNokP77J1KlG-6fzQ6pjY4JvEfFeyNjopg5F9lbg2iapyP76rgmmdPEVHVtbRnO3mDL3e370sH9PV88PT8naVKkZon2pNFzlQrXSZSTqWpsAgo8yAJRJwCZCz0uYq50oxZgjPsc0JcFoQpS2nM3S5_dsF_zmY2IvGRWXqWrbGD1FADgVdZOMY0WyLquBjDMaKLrhGhrUgWGzcib07sXEndu7Gu4tdxFA2Rv9d7WWNwM0WcK31oZFfPtRa9HJd-2CDbJWLgv6f8QsBHX04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629385262</pqid></control><display><type>article</type><title>Volatile organic compounds from exhaled breath in schizophrenia</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Medical Collection (Reading list)</source><creator>Jiang, Carina ; Dobrowolny, Henrik ; Gescher, Dorothee Maria ; Meyer-Lotz, Gabriela ; Steiner, Johann ; Hoeschen, Christoph ; Frodl, Thomas</creator><creatorcontrib>Jiang, Carina ; Dobrowolny, Henrik ; Gescher, Dorothee Maria ; Meyer-Lotz, Gabriela ; Steiner, Johann ; Hoeschen, Christoph ; Frodl, Thomas</creatorcontrib><description>This study aims to find out whether volatile organic compounds (VOCs) from exhaled breath differ significantly between patients with schizophrenia and healthy controls and whether it might be possible to create an algorithm that can predict the likelihood of suffering from schizophrenia. To test this theory, a group of patients with clinically diagnosed acute schizophrenia as well as a healthy comparison group has been investigated, which have given breath samples during awakening response right after awakening, after 30 min and after 60 min. The VOCs were measured using Proton-Transfer-Reaction Mass Spectrometry. By applying bootstrap with mixed model analysis (n = 1000), we detected 10 signatures (m/z 39, 40, 59, 60, 69, 70, 74, 85, 88 and 90) showing reduced concentration in patients with schizophrenia compared to healthy controls. These could safely discriminate patients and controls and were not influenced by smoking. Logistic regression forward method achieved an area under the receiver operating characteristic curve (AUC) of 0.91 and an accuracy of 82% and a machine learning approach with bartMachine an AUC of 0.96 and an accuracy of 91%. Breath gas analysis is easy to apply, well tolerated and seems to be a promising candidate for further studies on diagnostic and predictive clinical utility.</description><identifier>ISSN: 1562-2975</identifier><identifier>EISSN: 1814-1412</identifier><identifier>DOI: 10.1080/15622975.2022.2040052</identifier><identifier>PMID: 35171077</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>breath gas ; Breath Tests - methods ; classification ; clinical utility ; Exhalation ; Humans ; Mass Spectrometry - methods ; Schizophrenia ; Schizophrenia - diagnosis ; volatile organic compounds ; Volatile Organic Compounds - analysis</subject><ispartof>The world journal of biological psychiatry, 2022-11, Vol.23 (10), p.773-784</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-dd38623dcdb5a3b5ad3242534e2f1a20b2264bf6c67cc44e1760f6127391cdf73</citedby><cites>FETCH-LOGICAL-c413t-dd38623dcdb5a3b5ad3242534e2f1a20b2264bf6c67cc44e1760f6127391cdf73</cites><orcidid>0000-0002-8113-6959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35171077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Carina</creatorcontrib><creatorcontrib>Dobrowolny, Henrik</creatorcontrib><creatorcontrib>Gescher, Dorothee Maria</creatorcontrib><creatorcontrib>Meyer-Lotz, Gabriela</creatorcontrib><creatorcontrib>Steiner, Johann</creatorcontrib><creatorcontrib>Hoeschen, Christoph</creatorcontrib><creatorcontrib>Frodl, Thomas</creatorcontrib><title>Volatile organic compounds from exhaled breath in schizophrenia</title><title>The world journal of biological psychiatry</title><addtitle>World J Biol Psychiatry</addtitle><description>This study aims to find out whether volatile organic compounds (VOCs) from exhaled breath differ significantly between patients with schizophrenia and healthy controls and whether it might be possible to create an algorithm that can predict the likelihood of suffering from schizophrenia. To test this theory, a group of patients with clinically diagnosed acute schizophrenia as well as a healthy comparison group has been investigated, which have given breath samples during awakening response right after awakening, after 30 min and after 60 min. The VOCs were measured using Proton-Transfer-Reaction Mass Spectrometry. By applying bootstrap with mixed model analysis (n = 1000), we detected 10 signatures (m/z 39, 40, 59, 60, 69, 70, 74, 85, 88 and 90) showing reduced concentration in patients with schizophrenia compared to healthy controls. These could safely discriminate patients and controls and were not influenced by smoking. Logistic regression forward method achieved an area under the receiver operating characteristic curve (AUC) of 0.91 and an accuracy of 82% and a machine learning approach with bartMachine an AUC of 0.96 and an accuracy of 91%. Breath gas analysis is easy to apply, well tolerated and seems to be a promising candidate for further studies on diagnostic and predictive clinical utility.</description><subject>breath gas</subject><subject>Breath Tests - methods</subject><subject>classification</subject><subject>clinical utility</subject><subject>Exhalation</subject><subject>Humans</subject><subject>Mass Spectrometry - methods</subject><subject>Schizophrenia</subject><subject>Schizophrenia - diagnosis</subject><subject>volatile organic compounds</subject><subject>Volatile Organic Compounds - analysis</subject><issn>1562-2975</issn><issn>1814-1412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwCKCMLCn2sRM3E6CKm1SJBVgtxxdilMTBTgTl6UnVlpHhXIbvnF_6EDoneE7wAl-RLAcoeDYHDDA2hnEGB2hKFoSlhBE4HPeRSTfQBJ3E-IEx5UVBjtGEZoQTzPkUXb_5WvauNokP77J1KlG-6fzQ6pjY4JvEfFeyNjopg5F9lbg2iapyP76rgmmdPEVHVtbRnO3mDL3e370sH9PV88PT8naVKkZon2pNFzlQrXSZSTqWpsAgo8yAJRJwCZCz0uYq50oxZgjPsc0JcFoQpS2nM3S5_dsF_zmY2IvGRWXqWrbGD1FADgVdZOMY0WyLquBjDMaKLrhGhrUgWGzcib07sXEndu7Gu4tdxFA2Rv9d7WWNwM0WcK31oZFfPtRa9HJd-2CDbJWLgv6f8QsBHX04</recordid><startdate>20221126</startdate><enddate>20221126</enddate><creator>Jiang, Carina</creator><creator>Dobrowolny, Henrik</creator><creator>Gescher, Dorothee Maria</creator><creator>Meyer-Lotz, Gabriela</creator><creator>Steiner, Johann</creator><creator>Hoeschen, Christoph</creator><creator>Frodl, Thomas</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8113-6959</orcidid></search><sort><creationdate>20221126</creationdate><title>Volatile organic compounds from exhaled breath in schizophrenia</title><author>Jiang, Carina ; Dobrowolny, Henrik ; Gescher, Dorothee Maria ; Meyer-Lotz, Gabriela ; Steiner, Johann ; Hoeschen, Christoph ; Frodl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-dd38623dcdb5a3b5ad3242534e2f1a20b2264bf6c67cc44e1760f6127391cdf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>breath gas</topic><topic>Breath Tests - methods</topic><topic>classification</topic><topic>clinical utility</topic><topic>Exhalation</topic><topic>Humans</topic><topic>Mass Spectrometry - methods</topic><topic>Schizophrenia</topic><topic>Schizophrenia - diagnosis</topic><topic>volatile organic compounds</topic><topic>Volatile Organic Compounds - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Carina</creatorcontrib><creatorcontrib>Dobrowolny, Henrik</creatorcontrib><creatorcontrib>Gescher, Dorothee Maria</creatorcontrib><creatorcontrib>Meyer-Lotz, Gabriela</creatorcontrib><creatorcontrib>Steiner, Johann</creatorcontrib><creatorcontrib>Hoeschen, Christoph</creatorcontrib><creatorcontrib>Frodl, Thomas</creatorcontrib><collection>Taylor &amp; Francis Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The world journal of biological psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Carina</au><au>Dobrowolny, Henrik</au><au>Gescher, Dorothee Maria</au><au>Meyer-Lotz, Gabriela</au><au>Steiner, Johann</au><au>Hoeschen, Christoph</au><au>Frodl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volatile organic compounds from exhaled breath in schizophrenia</atitle><jtitle>The world journal of biological psychiatry</jtitle><addtitle>World J Biol Psychiatry</addtitle><date>2022-11-26</date><risdate>2022</risdate><volume>23</volume><issue>10</issue><spage>773</spage><epage>784</epage><pages>773-784</pages><issn>1562-2975</issn><eissn>1814-1412</eissn><abstract>This study aims to find out whether volatile organic compounds (VOCs) from exhaled breath differ significantly between patients with schizophrenia and healthy controls and whether it might be possible to create an algorithm that can predict the likelihood of suffering from schizophrenia. To test this theory, a group of patients with clinically diagnosed acute schizophrenia as well as a healthy comparison group has been investigated, which have given breath samples during awakening response right after awakening, after 30 min and after 60 min. The VOCs were measured using Proton-Transfer-Reaction Mass Spectrometry. By applying bootstrap with mixed model analysis (n = 1000), we detected 10 signatures (m/z 39, 40, 59, 60, 69, 70, 74, 85, 88 and 90) showing reduced concentration in patients with schizophrenia compared to healthy controls. These could safely discriminate patients and controls and were not influenced by smoking. Logistic regression forward method achieved an area under the receiver operating characteristic curve (AUC) of 0.91 and an accuracy of 82% and a machine learning approach with bartMachine an AUC of 0.96 and an accuracy of 91%. Breath gas analysis is easy to apply, well tolerated and seems to be a promising candidate for further studies on diagnostic and predictive clinical utility.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>35171077</pmid><doi>10.1080/15622975.2022.2040052</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8113-6959</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1562-2975
ispartof The world journal of biological psychiatry, 2022-11, Vol.23 (10), p.773-784
issn 1562-2975
1814-1412
language eng
recordid cdi_crossref_primary_10_1080_15622975_2022_2040052
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Medical Collection (Reading list)
subjects breath gas
Breath Tests - methods
classification
clinical utility
Exhalation
Humans
Mass Spectrometry - methods
Schizophrenia
Schizophrenia - diagnosis
volatile organic compounds
Volatile Organic Compounds - analysis
title Volatile organic compounds from exhaled breath in schizophrenia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volatile%20organic%20compounds%20from%20exhaled%20breath%20in%20schizophrenia&rft.jtitle=The%20world%20journal%20of%20biological%20psychiatry&rft.au=Jiang,%20Carina&rft.date=2022-11-26&rft.volume=23&rft.issue=10&rft.spage=773&rft.epage=784&rft.pages=773-784&rft.issn=1562-2975&rft.eissn=1814-1412&rft_id=info:doi/10.1080/15622975.2022.2040052&rft_dat=%3Cproquest_cross%3E2629385262%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-dd38623dcdb5a3b5ad3242534e2f1a20b2264bf6c67cc44e1760f6127391cdf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629385262&rft_id=info:pmid/35171077&rfr_iscdi=true