Loading…

Comparison of the service life, life-cycle costs and assessment of hybrid and traditional reinforced concrete through a case study of bridge edge beams in Sweden

The edge beams of reinforced concrete bridges with de-icing salts sprayed experience extensive corrosion damage. The average service life of edge beams needing replacement in Sweden has been reported as only 45 years, causing great economic loss to both owners and users. Hence, finding a durable sol...

Full description

Saved in:
Bibliographic Details
Published in:Structure and infrastructure engineering 2023-11, Vol.19 (1), p.39-57
Main Authors: Chen, E., Berrocal, Carlos G., Löfgren, Ingemar, Lundgren, Karin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The edge beams of reinforced concrete bridges with de-icing salts sprayed experience extensive corrosion damage. The average service life of edge beams needing replacement in Sweden has been reported as only 45 years, causing great economic loss to both owners and users. Hence, finding a durable solution for edge beams would benefit society. Hybrid reinforced concrete structures, produced by adding a low-to-moderate fibre content into traditional reinforced concrete, can effectively limit the service crack width and improve resistance to chloride-induced corrosion damage. In this paper, different alternatives of hybrid and traditional reinforced edge beams were designed for a case study. The service life of the alternatives was compared by conducting chloride diffusion calculations and by applying a corrosion-induced cracking model. The economic and environmental (indicated by greenhouse gas emissions) benefits of using hybrid reinforced edge beams were assessed by life-cycle cost analysis and life-cycle assessment. The results showed that the service life of edge beams made of hybrid reinforced concrete can be prolonged by over 58%, thereby enabling a significant reduction in the total life-cycle costs and annual total greenhouse gas emissions.
ISSN:1573-2479
1744-8980
1744-8980
DOI:10.1080/15732479.2021.1919720