Loading…

MJO potential predictability and predictive skill in IAP AGCM 4.1

MJO模拟及预报是现阶段大气科学研究的前沿问题。本文利用中科院大气物理所大气环流模式(IAP AGCM4.1)的集合回报结果,分析了MJO潜在可预报性及预报技巧。研究表明IAP AGCM4.1对MJO有着较好的潜在可预报性,且集合预报的潜在可预报性要明显优于单样本预报;就MJO的预报技巧而言,集合预报同样优于单样本预报;模式对MJO的预报技巧还显著依赖于预报初始时刻的MJO状态,初始MJO信号越强,模式对MJO的预报技巧也越高,且更接近可预报性的上限。...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao 2016-09, Vol.9 (5), p.388-393
Main Authors: WANG, Kun, LIN, Zhao-Hui, LING, Jian, YU, Yue, WU, Cheng-Lai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3
cites cdi_FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3
container_end_page 393
container_issue 5
container_start_page 388
container_title Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao
container_volume 9
creator WANG, Kun
LIN, Zhao-Hui
LING, Jian
YU, Yue
WU, Cheng-Lai
description MJO模拟及预报是现阶段大气科学研究的前沿问题。本文利用中科院大气物理所大气环流模式(IAP AGCM4.1)的集合回报结果,分析了MJO潜在可预报性及预报技巧。研究表明IAP AGCM4.1对MJO有着较好的潜在可预报性,且集合预报的潜在可预报性要明显优于单样本预报;就MJO的预报技巧而言,集合预报同样优于单样本预报;模式对MJO的预报技巧还显著依赖于预报初始时刻的MJO状态,初始MJO信号越强,模式对MJO的预报技巧也越高,且更接近可预报性的上限。
doi_str_mv 10.1080/16742834.2016.1211469
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_16742834_2016_1211469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670280337</cqvip_id><sourcerecordid>2215245244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsNR-BCHoOXFn_6W5GYrWSks96HnZJrt1a7pJd1Ol396Etl6FgYHhzbx5P4RuASeAx_gBRMrImLKEYBAJEAAmsgs0IDQVsQBCL9Gg18S96BqNQthgjIESkWI6QPnidRk1datda1UVNV6XtmjVyla2PUTKleeR_dZR-LJVFVkXzfK3KJ9OFhFL4AZdGVUFPTr1Ifp4fnqfvMTz5XQ2yedxwYC0cVrS7jNREqaBUcaLggnDKXBcUMgMGGV4plPCOQequkhYmFIR0KlRGScrOkT3x7uNr3d7HVq5qffedZaSEOCEdcU6FT-qCl-H4LWRjbdb5Q8SsOyByTMw2QOTJ2Dd3uNxzzpT-636qX1VylYdqtobr1xhg6T_nbg7WX_Wbr2zbv3n3bHuAlGa0l_FlnlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215245244</pqid></control><display><type>article</type><title>MJO potential predictability and predictive skill in IAP AGCM 4.1</title><source>Taylor &amp; Francis Open Access</source><source>Publicly Available Content Database</source><creator>WANG, Kun ; LIN, Zhao-Hui ; LING, Jian ; YU, Yue ; WU, Cheng-Lai</creator><creatorcontrib>WANG, Kun ; LIN, Zhao-Hui ; LING, Jian ; YU, Yue ; WU, Cheng-Lai</creatorcontrib><description>MJO模拟及预报是现阶段大气科学研究的前沿问题。本文利用中科院大气物理所大气环流模式(IAP AGCM4.1)的集合回报结果,分析了MJO潜在可预报性及预报技巧。研究表明IAP AGCM4.1对MJO有着较好的潜在可预报性,且集合预报的潜在可预报性要明显优于单样本预报;就MJO的预报技巧而言,集合预报同样优于单样本预报;模式对MJO的预报技巧还显著依赖于预报初始时刻的MJO状态,初始MJO信号越强,模式对MJO的预报技巧也越高,且更接近可预报性的上限。</description><identifier>ISSN: 1674-2834</identifier><identifier>EISSN: 2376-6123</identifier><identifier>DOI: 10.1080/16742834.2016.1211469</identifier><language>eng</language><publisher>Beijing: Taylor &amp; Francis</publisher><subject>Amplitude ; Climate prediction ; IAP AGCM 4.1 ; IAP大气环流模式 ; Methods ; MJO ; MJO潜在可预报性 ; MJO预报技巧 ; predictability ; prediction skill ; Rain ; 热带大气季节内振荡</subject><ispartof>Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao, 2016-09, Vol.9 (5), p.388-393</ispartof><rights>2016 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><rights>2016 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3</citedby><cites>FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3</cites><orcidid>0000-0003-1376-3106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89435X/89435X.jpg</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/16742834.2016.1211469$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2215245244?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27502,27924,27925,37012,44590,59143,59144</link.rule.ids></links><search><creatorcontrib>WANG, Kun</creatorcontrib><creatorcontrib>LIN, Zhao-Hui</creatorcontrib><creatorcontrib>LING, Jian</creatorcontrib><creatorcontrib>YU, Yue</creatorcontrib><creatorcontrib>WU, Cheng-Lai</creatorcontrib><title>MJO potential predictability and predictive skill in IAP AGCM 4.1</title><title>Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao</title><addtitle>Atmospheric and Oceanic Science Letters</addtitle><description>MJO模拟及预报是现阶段大气科学研究的前沿问题。本文利用中科院大气物理所大气环流模式(IAP AGCM4.1)的集合回报结果,分析了MJO潜在可预报性及预报技巧。研究表明IAP AGCM4.1对MJO有着较好的潜在可预报性,且集合预报的潜在可预报性要明显优于单样本预报;就MJO的预报技巧而言,集合预报同样优于单样本预报;模式对MJO的预报技巧还显著依赖于预报初始时刻的MJO状态,初始MJO信号越强,模式对MJO的预报技巧也越高,且更接近可预报性的上限。</description><subject>Amplitude</subject><subject>Climate prediction</subject><subject>IAP AGCM 4.1</subject><subject>IAP大气环流模式</subject><subject>Methods</subject><subject>MJO</subject><subject>MJO潜在可预报性</subject><subject>MJO预报技巧</subject><subject>predictability</subject><subject>prediction skill</subject><subject>Rain</subject><subject>热带大气季节内振荡</subject><issn>1674-2834</issn><issn>2376-6123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><recordid>eNqFkE9Lw0AQxRdRsNR-BCHoOXFn_6W5GYrWSks96HnZJrt1a7pJd1Ol396Etl6FgYHhzbx5P4RuASeAx_gBRMrImLKEYBAJEAAmsgs0IDQVsQBCL9Gg18S96BqNQthgjIESkWI6QPnidRk1datda1UVNV6XtmjVyla2PUTKleeR_dZR-LJVFVkXzfK3KJ9OFhFL4AZdGVUFPTr1Ifp4fnqfvMTz5XQ2yedxwYC0cVrS7jNREqaBUcaLggnDKXBcUMgMGGV4plPCOQequkhYmFIR0KlRGScrOkT3x7uNr3d7HVq5qffedZaSEOCEdcU6FT-qCl-H4LWRjbdb5Q8SsOyByTMw2QOTJ2Dd3uNxzzpT-636qX1VylYdqtobr1xhg6T_nbg7WX_Wbr2zbv3n3bHuAlGa0l_FlnlQ</recordid><startdate>20160902</startdate><enddate>20160902</enddate><creator>WANG, Kun</creator><creator>LIN, Zhao-Hui</creator><creator>LING, Jian</creator><creator>YU, Yue</creator><creator>WU, Cheng-Lai</creator><general>Taylor &amp; Francis</general><general>KeAi Publishing Communications Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1376-3106</orcidid></search><sort><creationdate>20160902</creationdate><title>MJO potential predictability and predictive skill in IAP AGCM 4.1</title><author>WANG, Kun ; LIN, Zhao-Hui ; LING, Jian ; YU, Yue ; WU, Cheng-Lai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplitude</topic><topic>Climate prediction</topic><topic>IAP AGCM 4.1</topic><topic>IAP大气环流模式</topic><topic>Methods</topic><topic>MJO</topic><topic>MJO潜在可预报性</topic><topic>MJO预报技巧</topic><topic>predictability</topic><topic>prediction skill</topic><topic>Rain</topic><topic>热带大气季节内振荡</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, Kun</creatorcontrib><creatorcontrib>LIN, Zhao-Hui</creatorcontrib><creatorcontrib>LING, Jian</creatorcontrib><creatorcontrib>YU, Yue</creatorcontrib><creatorcontrib>WU, Cheng-Lai</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, Kun</au><au>LIN, Zhao-Hui</au><au>LING, Jian</au><au>YU, Yue</au><au>WU, Cheng-Lai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MJO potential predictability and predictive skill in IAP AGCM 4.1</atitle><jtitle>Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao</jtitle><addtitle>Atmospheric and Oceanic Science Letters</addtitle><date>2016-09-02</date><risdate>2016</risdate><volume>9</volume><issue>5</issue><spage>388</spage><epage>393</epage><pages>388-393</pages><issn>1674-2834</issn><eissn>2376-6123</eissn><abstract>MJO模拟及预报是现阶段大气科学研究的前沿问题。本文利用中科院大气物理所大气环流模式(IAP AGCM4.1)的集合回报结果,分析了MJO潜在可预报性及预报技巧。研究表明IAP AGCM4.1对MJO有着较好的潜在可预报性,且集合预报的潜在可预报性要明显优于单样本预报;就MJO的预报技巧而言,集合预报同样优于单样本预报;模式对MJO的预报技巧还显著依赖于预报初始时刻的MJO状态,初始MJO信号越强,模式对MJO的预报技巧也越高,且更接近可预报性的上限。</abstract><cop>Beijing</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/16742834.2016.1211469</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1376-3106</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-2834
ispartof Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao, 2016-09, Vol.9 (5), p.388-393
issn 1674-2834
2376-6123
language eng
recordid cdi_crossref_primary_10_1080_16742834_2016_1211469
source Taylor & Francis Open Access; Publicly Available Content Database
subjects Amplitude
Climate prediction
IAP AGCM 4.1
IAP大气环流模式
Methods
MJO
MJO潜在可预报性
MJO预报技巧
predictability
prediction skill
Rain
热带大气季节内振荡
title MJO potential predictability and predictive skill in IAP AGCM 4.1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MJO%20potential%20predictability%20and%20predictive%20skill%20in%20IAP%20AGCM%204.1&rft.jtitle=Atmospheric%20and%20oceanic%20science%20letters%20=%20Daqi-he-haiyang-kexue-kuaibao&rft.au=WANG,%20Kun&rft.date=2016-09-02&rft.volume=9&rft.issue=5&rft.spage=388&rft.epage=393&rft.pages=388-393&rft.issn=1674-2834&rft.eissn=2376-6123&rft_id=info:doi/10.1080/16742834.2016.1211469&rft_dat=%3Cproquest_cross%3E2215245244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215245244&rft_id=info:pmid/&rft_cqvip_id=670280337&rfr_iscdi=true