Loading…
MJO potential predictability and predictive skill in IAP AGCM 4.1
MJO模拟及预报是现阶段大气科学研究的前沿问题。本文利用中科院大气物理所大气环流模式(IAP AGCM4.1)的集合回报结果,分析了MJO潜在可预报性及预报技巧。研究表明IAP AGCM4.1对MJO有着较好的潜在可预报性,且集合预报的潜在可预报性要明显优于单样本预报;就MJO的预报技巧而言,集合预报同样优于单样本预报;模式对MJO的预报技巧还显著依赖于预报初始时刻的MJO状态,初始MJO信号越强,模式对MJO的预报技巧也越高,且更接近可预报性的上限。...
Saved in:
Published in: | Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao 2016-09, Vol.9 (5), p.388-393 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3 |
container_end_page | 393 |
container_issue | 5 |
container_start_page | 388 |
container_title | Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao |
container_volume | 9 |
creator | WANG, Kun LIN, Zhao-Hui LING, Jian YU, Yue WU, Cheng-Lai |
description | MJO模拟及预报是现阶段大气科学研究的前沿问题。本文利用中科院大气物理所大气环流模式(IAP AGCM4.1)的集合回报结果,分析了MJO潜在可预报性及预报技巧。研究表明IAP AGCM4.1对MJO有着较好的潜在可预报性,且集合预报的潜在可预报性要明显优于单样本预报;就MJO的预报技巧而言,集合预报同样优于单样本预报;模式对MJO的预报技巧还显著依赖于预报初始时刻的MJO状态,初始MJO信号越强,模式对MJO的预报技巧也越高,且更接近可预报性的上限。 |
doi_str_mv | 10.1080/16742834.2016.1211469 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_16742834_2016_1211469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670280337</cqvip_id><sourcerecordid>2215245244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsNR-BCHoOXFn_6W5GYrWSks96HnZJrt1a7pJd1Ol396Etl6FgYHhzbx5P4RuASeAx_gBRMrImLKEYBAJEAAmsgs0IDQVsQBCL9Gg18S96BqNQthgjIESkWI6QPnidRk1datda1UVNV6XtmjVyla2PUTKleeR_dZR-LJVFVkXzfK3KJ9OFhFL4AZdGVUFPTr1Ifp4fnqfvMTz5XQ2yedxwYC0cVrS7jNREqaBUcaLggnDKXBcUMgMGGV4plPCOQequkhYmFIR0KlRGScrOkT3x7uNr3d7HVq5qffedZaSEOCEdcU6FT-qCl-H4LWRjbdb5Q8SsOyByTMw2QOTJ2Dd3uNxzzpT-636qX1VylYdqtobr1xhg6T_nbg7WX_Wbr2zbv3n3bHuAlGa0l_FlnlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215245244</pqid></control><display><type>article</type><title>MJO potential predictability and predictive skill in IAP AGCM 4.1</title><source>Taylor & Francis Open Access</source><source>Publicly Available Content Database</source><creator>WANG, Kun ; LIN, Zhao-Hui ; LING, Jian ; YU, Yue ; WU, Cheng-Lai</creator><creatorcontrib>WANG, Kun ; LIN, Zhao-Hui ; LING, Jian ; YU, Yue ; WU, Cheng-Lai</creatorcontrib><description>MJO模拟及预报是现阶段大气科学研究的前沿问题。本文利用中科院大气物理所大气环流模式(IAP AGCM4.1)的集合回报结果,分析了MJO潜在可预报性及预报技巧。研究表明IAP AGCM4.1对MJO有着较好的潜在可预报性,且集合预报的潜在可预报性要明显优于单样本预报;就MJO的预报技巧而言,集合预报同样优于单样本预报;模式对MJO的预报技巧还显著依赖于预报初始时刻的MJO状态,初始MJO信号越强,模式对MJO的预报技巧也越高,且更接近可预报性的上限。</description><identifier>ISSN: 1674-2834</identifier><identifier>EISSN: 2376-6123</identifier><identifier>DOI: 10.1080/16742834.2016.1211469</identifier><language>eng</language><publisher>Beijing: Taylor & Francis</publisher><subject>Amplitude ; Climate prediction ; IAP AGCM 4.1 ; IAP大气环流模式 ; Methods ; MJO ; MJO潜在可预报性 ; MJO预报技巧 ; predictability ; prediction skill ; Rain ; 热带大气季节内振荡</subject><ispartof>Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao, 2016-09, Vol.9 (5), p.388-393</ispartof><rights>2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016</rights><rights>2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3</citedby><cites>FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3</cites><orcidid>0000-0003-1376-3106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89435X/89435X.jpg</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/16742834.2016.1211469$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2215245244?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27502,27924,27925,37012,44590,59143,59144</link.rule.ids></links><search><creatorcontrib>WANG, Kun</creatorcontrib><creatorcontrib>LIN, Zhao-Hui</creatorcontrib><creatorcontrib>LING, Jian</creatorcontrib><creatorcontrib>YU, Yue</creatorcontrib><creatorcontrib>WU, Cheng-Lai</creatorcontrib><title>MJO potential predictability and predictive skill in IAP AGCM 4.1</title><title>Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao</title><addtitle>Atmospheric and Oceanic Science Letters</addtitle><description>MJO模拟及预报是现阶段大气科学研究的前沿问题。本文利用中科院大气物理所大气环流模式(IAP AGCM4.1)的集合回报结果,分析了MJO潜在可预报性及预报技巧。研究表明IAP AGCM4.1对MJO有着较好的潜在可预报性,且集合预报的潜在可预报性要明显优于单样本预报;就MJO的预报技巧而言,集合预报同样优于单样本预报;模式对MJO的预报技巧还显著依赖于预报初始时刻的MJO状态,初始MJO信号越强,模式对MJO的预报技巧也越高,且更接近可预报性的上限。</description><subject>Amplitude</subject><subject>Climate prediction</subject><subject>IAP AGCM 4.1</subject><subject>IAP大气环流模式</subject><subject>Methods</subject><subject>MJO</subject><subject>MJO潜在可预报性</subject><subject>MJO预报技巧</subject><subject>predictability</subject><subject>prediction skill</subject><subject>Rain</subject><subject>热带大气季节内振荡</subject><issn>1674-2834</issn><issn>2376-6123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><recordid>eNqFkE9Lw0AQxRdRsNR-BCHoOXFn_6W5GYrWSks96HnZJrt1a7pJd1Ol396Etl6FgYHhzbx5P4RuASeAx_gBRMrImLKEYBAJEAAmsgs0IDQVsQBCL9Gg18S96BqNQthgjIESkWI6QPnidRk1datda1UVNV6XtmjVyla2PUTKleeR_dZR-LJVFVkXzfK3KJ9OFhFL4AZdGVUFPTr1Ifp4fnqfvMTz5XQ2yedxwYC0cVrS7jNREqaBUcaLggnDKXBcUMgMGGV4plPCOQequkhYmFIR0KlRGScrOkT3x7uNr3d7HVq5qffedZaSEOCEdcU6FT-qCl-H4LWRjbdb5Q8SsOyByTMw2QOTJ2Dd3uNxzzpT-636qX1VylYdqtobr1xhg6T_nbg7WX_Wbr2zbv3n3bHuAlGa0l_FlnlQ</recordid><startdate>20160902</startdate><enddate>20160902</enddate><creator>WANG, Kun</creator><creator>LIN, Zhao-Hui</creator><creator>LING, Jian</creator><creator>YU, Yue</creator><creator>WU, Cheng-Lai</creator><general>Taylor & Francis</general><general>KeAi Publishing Communications Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1376-3106</orcidid></search><sort><creationdate>20160902</creationdate><title>MJO potential predictability and predictive skill in IAP AGCM 4.1</title><author>WANG, Kun ; LIN, Zhao-Hui ; LING, Jian ; YU, Yue ; WU, Cheng-Lai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplitude</topic><topic>Climate prediction</topic><topic>IAP AGCM 4.1</topic><topic>IAP大气环流模式</topic><topic>Methods</topic><topic>MJO</topic><topic>MJO潜在可预报性</topic><topic>MJO预报技巧</topic><topic>predictability</topic><topic>prediction skill</topic><topic>Rain</topic><topic>热带大气季节内振荡</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, Kun</creatorcontrib><creatorcontrib>LIN, Zhao-Hui</creatorcontrib><creatorcontrib>LING, Jian</creatorcontrib><creatorcontrib>YU, Yue</creatorcontrib><creatorcontrib>WU, Cheng-Lai</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, Kun</au><au>LIN, Zhao-Hui</au><au>LING, Jian</au><au>YU, Yue</au><au>WU, Cheng-Lai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MJO potential predictability and predictive skill in IAP AGCM 4.1</atitle><jtitle>Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao</jtitle><addtitle>Atmospheric and Oceanic Science Letters</addtitle><date>2016-09-02</date><risdate>2016</risdate><volume>9</volume><issue>5</issue><spage>388</spage><epage>393</epage><pages>388-393</pages><issn>1674-2834</issn><eissn>2376-6123</eissn><abstract>MJO模拟及预报是现阶段大气科学研究的前沿问题。本文利用中科院大气物理所大气环流模式(IAP AGCM4.1)的集合回报结果,分析了MJO潜在可预报性及预报技巧。研究表明IAP AGCM4.1对MJO有着较好的潜在可预报性,且集合预报的潜在可预报性要明显优于单样本预报;就MJO的预报技巧而言,集合预报同样优于单样本预报;模式对MJO的预报技巧还显著依赖于预报初始时刻的MJO状态,初始MJO信号越强,模式对MJO的预报技巧也越高,且更接近可预报性的上限。</abstract><cop>Beijing</cop><pub>Taylor & Francis</pub><doi>10.1080/16742834.2016.1211469</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1376-3106</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-2834 |
ispartof | Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao, 2016-09, Vol.9 (5), p.388-393 |
issn | 1674-2834 2376-6123 |
language | eng |
recordid | cdi_crossref_primary_10_1080_16742834_2016_1211469 |
source | Taylor & Francis Open Access; Publicly Available Content Database |
subjects | Amplitude Climate prediction IAP AGCM 4.1 IAP大气环流模式 Methods MJO MJO潜在可预报性 MJO预报技巧 predictability prediction skill Rain 热带大气季节内振荡 |
title | MJO potential predictability and predictive skill in IAP AGCM 4.1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MJO%20potential%20predictability%20and%20predictive%20skill%20in%20IAP%20AGCM%204.1&rft.jtitle=Atmospheric%20and%20oceanic%20science%20letters%20=%20Daqi-he-haiyang-kexue-kuaibao&rft.au=WANG,%20Kun&rft.date=2016-09-02&rft.volume=9&rft.issue=5&rft.spage=388&rft.epage=393&rft.pages=388-393&rft.issn=1674-2834&rft.eissn=2376-6123&rft_id=info:doi/10.1080/16742834.2016.1211469&rft_dat=%3Cproquest_cross%3E2215245244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-7d31466d24e14345cc46f53150c319f1faf59e7255513a42806fda21e7fa952b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215245244&rft_id=info:pmid/&rft_cqvip_id=670280337&rfr_iscdi=true |