Loading…

Crystal structure, computational studies, and stereoselectivity in the synthesis of 2-aryl-thiazolidine-4-carboxylic acids via in situ imine intermediate

This article presents the synthesis of (2R/2S,4R)-2-aryl-thiazolidine-4-carboxylic acids via nucleophilic addition of L-Cysteine on aromatic aldehydes involving a yield and time-effective room temperature reaction in an aqueous DMSO medium in the presence of NaHCO 3 as a base. The synthesized diaste...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sulfur chemistry 2016-07, Vol.37 (4), p.401-425
Main Authors: Jagtap, Rohidas M., Rizvi, Masood A., Dangat, Yuvraj B., Pardeshi, Satish K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents the synthesis of (2R/2S,4R)-2-aryl-thiazolidine-4-carboxylic acids via nucleophilic addition of L-Cysteine on aromatic aldehydes involving a yield and time-effective room temperature reaction in an aqueous DMSO medium in the presence of NaHCO 3 as a base. The synthesized diastereomers were spectroscopically characterized and quantified for diastereomeric excess by liquid chromatography-mass spectrometry analysis. The impact of the type and position of substituent in aromatic aldehydes on reaction time, % yield, 1 H NMR shift at newly formed chiral center [C(2)-H], and diastereomeric excess (de%) have been investigated. A plausible mechanism for stereoselectivity via an in situ imine intermediate is proposed using real-time IR monitoring of the synthetic reaction based on the significant signals at 1597, 1593 cm −1 for imine (C=N) stretching. The imine mechanism for stereoselectivity was further supported by NMR studies of azomethine 13 C NMR signals at 159, 160 δ ppm and by the single crystal structure of hitherto unknown (2S,4R)-3-(tert-butoxycarbonyl)-2-(2-hydroxyphenyl)thiazolidine-4-carboxylic acid (3a) obtained as a major diastereomer in the synthesis of the butyloxy carbonyl (BOC) derivative of (2R/2S,4R)-2-(2-hydroxyphenyl)thiazolidine-4-carboxylic acid. The significant ortho-OH effect of phenolic hydroxyl group leading to strong hydrogen bondings plays a vital role in the formation of 2S,4R BOC derivative stereoselectively. The frontier molecular orbitals, possible electronic excitations, IR band characterizations, and reactivity parameters of newly reported compound (3a) have been predicted using quantum chemical descriptors from density functional theory. The theoretical exploration of experimental spectra using time-dependent DFT indicated a (π-π*) transition between HOMO and LUMO in the ultraviolet region.
ISSN:1741-5993
1741-6000
DOI:10.1080/17415993.2016.1156116