Loading…
Identifying receptor-like kinases that enable Caulobacter RHG1 to promote plant growth in Arabidopsis thaliana
Plants express an array of receptor-like kinases (RLKs) to control development and communicate with their environment. Many RLKs are uncharacterized and some of them are expected to regulate plant responses to plant growth-promoting rhizobacteria (PGPR). Despite documented effects induced by Cauloba...
Saved in:
Published in: | Journal of plant interactions 2024-12, Vol.19 (1) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plants express an array of receptor-like kinases (RLKs) to control development and communicate with their environment. Many RLKs are uncharacterized and some of them are expected to regulate plant responses to plant growth-promoting rhizobacteria (PGPR). Despite documented effects induced by Caulobacter RHG1, the underlying signaling pathways and the involved RLKs remain uncharted. Through a targeted RLK mutant screening, we aimed to decipher the receptors that steer the Caulobacter RHG1-induced growth promotion in Arabidopsis thaliana. We identified four RLKs that are pivotal in the RHG1-Arabidopsis interaction, including the coreceptors SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1) and BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1/SERK3), which act redundantly in the RHG1-Arabidopsis interaction, possibly by interplaying with the unknown RLK AT3G28040 and the immunity-related ELONGATION FACTOR-TU RECEPTOR (EFR). These results shed new light on the molecular dynamics orchestrating plant responses to PGPR, and concurrently contribute a crucial piece to the intricate puzzle of RLK interactions.
Key policy highlights
Four RLKs; BAK1, SERK1, EFR, and AT3G28040 (RRHG) are involved in the RHG1-Arabidopsis interaction.
BAK1 and SERK1, two well-described co-receptors, act redundantly and play a pivotal role in the RHG1-driven growth promotion, possibly by interplaying with the unknown RLK AT3G28040 and the immunity-related RLK EFR.
Most known development - and immunity-related RLKs barely influence RHG1-driven plant growth promotion in Arabidopsis. |
---|---|
ISSN: | 1742-9145 1742-9153 |
DOI: | 10.1080/17429145.2024.2346547 |