Loading…

Dynamic assessment indices

This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, allows us to significantly generalize existing results is the theory of -modules. In the fi...

Full description

Saved in:
Bibliographic Details
Published in:Stochastics (Abingdon, Eng. : 2005) Eng. : 2005), 2016-01, Vol.88 (1), p.1-44
Main Authors: Bielecki, Tomasz R., Cialenco, Igor, Drapeau, Samuel, Karliczek, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3
cites cdi_FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3
container_end_page 44
container_issue 1
container_start_page 1
container_title Stochastics (Abingdon, Eng. : 2005)
container_volume 88
creator Bielecki, Tomasz R.
Cialenco, Igor
Drapeau, Samuel
Karliczek, Martin
description This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, allows us to significantly generalize existing results is the theory of -modules. In the first part of the paper we develop the general theory and provide a robust representation of conditional assessment indices, and in the second part we apply this theory to dynamic acceptability indices acting on stochastic processes.
doi_str_mv 10.1080/17442508.2015.1026346
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17442508_2015_1026346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4050390491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_QBAKbtxMvXmnO6U-oeBG1yGTSSBlJlOTGaT_3pRWFy5c3cvhO-deDkJXGOYYFNxiyRjhoOYEMC8SEZSJIzTZ6RXhWBz_7qBO0VnOawBGKIUJunzYRtMFOzM5u5w7F4dZiE2wLp-jE2_a7C4Oc4o-nh7fly_V6u35dXm_qixjeKgMdYKAwRyzmhojOWMcQNbeNaCYl-W-EDWV3jeNY97gBQMpMZdKUm-bmk7RzT53k_rP0eVBdyFb17Ymun7MGssFJZwLqQp6_Qdd92OK5btCKSkVUQtWKL6nbOpzTs7rTQqdSVuNQe8a0z-N6V1j-tBY8d3tfSH6PnXmq09towezbfvkk4k2ZE3_j_gGUXVvPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787782894</pqid></control><display><type>article</type><title>Dynamic assessment indices</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Bielecki, Tomasz R. ; Cialenco, Igor ; Drapeau, Samuel ; Karliczek, Martin</creator><creatorcontrib>Bielecki, Tomasz R. ; Cialenco, Igor ; Drapeau, Samuel ; Karliczek, Martin</creatorcontrib><description>This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, allows us to significantly generalize existing results is the theory of -modules. In the first part of the paper we develop the general theory and provide a robust representation of conditional assessment indices, and in the second part we apply this theory to dynamic acceptability indices acting on stochastic processes.</description><identifier>ISSN: 1744-2508</identifier><identifier>EISSN: 1744-2516</identifier><identifier>DOI: 10.1080/17442508.2015.1026346</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Acceptability ; assessment indices ; Assessments ; certainty equivalent ; dynamic acceptability index ; dynamic GLR ; dynamic measures of performance ; dynamic risk measures ; Dynamic structural analysis ; Dynamic tests ; Dynamics ; Mathematical analysis ; Representations ; Stochastic processes ; strong time consistency</subject><ispartof>Stochastics (Abingdon, Eng. : 2005), 2016-01, Vol.88 (1), p.1-44</ispartof><rights>2015 Taylor &amp; Francis 2015</rights><rights>2015 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3</citedby><cites>FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Bielecki, Tomasz R.</creatorcontrib><creatorcontrib>Cialenco, Igor</creatorcontrib><creatorcontrib>Drapeau, Samuel</creatorcontrib><creatorcontrib>Karliczek, Martin</creatorcontrib><title>Dynamic assessment indices</title><title>Stochastics (Abingdon, Eng. : 2005)</title><description>This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, allows us to significantly generalize existing results is the theory of -modules. In the first part of the paper we develop the general theory and provide a robust representation of conditional assessment indices, and in the second part we apply this theory to dynamic acceptability indices acting on stochastic processes.</description><subject>Acceptability</subject><subject>assessment indices</subject><subject>Assessments</subject><subject>certainty equivalent</subject><subject>dynamic acceptability index</subject><subject>dynamic GLR</subject><subject>dynamic measures of performance</subject><subject>dynamic risk measures</subject><subject>Dynamic structural analysis</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>Stochastic processes</subject><subject>strong time consistency</subject><issn>1744-2508</issn><issn>1744-2516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_QBAKbtxMvXmnO6U-oeBG1yGTSSBlJlOTGaT_3pRWFy5c3cvhO-deDkJXGOYYFNxiyRjhoOYEMC8SEZSJIzTZ6RXhWBz_7qBO0VnOawBGKIUJunzYRtMFOzM5u5w7F4dZiE2wLp-jE2_a7C4Oc4o-nh7fly_V6u35dXm_qixjeKgMdYKAwRyzmhojOWMcQNbeNaCYl-W-EDWV3jeNY97gBQMpMZdKUm-bmk7RzT53k_rP0eVBdyFb17Ymun7MGssFJZwLqQp6_Qdd92OK5btCKSkVUQtWKL6nbOpzTs7rTQqdSVuNQe8a0z-N6V1j-tBY8d3tfSH6PnXmq09towezbfvkk4k2ZE3_j_gGUXVvPw</recordid><startdate>20160102</startdate><enddate>20160102</enddate><creator>Bielecki, Tomasz R.</creator><creator>Cialenco, Igor</creator><creator>Drapeau, Samuel</creator><creator>Karliczek, Martin</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160102</creationdate><title>Dynamic assessment indices</title><author>Bielecki, Tomasz R. ; Cialenco, Igor ; Drapeau, Samuel ; Karliczek, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acceptability</topic><topic>assessment indices</topic><topic>Assessments</topic><topic>certainty equivalent</topic><topic>dynamic acceptability index</topic><topic>dynamic GLR</topic><topic>dynamic measures of performance</topic><topic>dynamic risk measures</topic><topic>Dynamic structural analysis</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>Stochastic processes</topic><topic>strong time consistency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bielecki, Tomasz R.</creatorcontrib><creatorcontrib>Cialenco, Igor</creatorcontrib><creatorcontrib>Drapeau, Samuel</creatorcontrib><creatorcontrib>Karliczek, Martin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bielecki, Tomasz R.</au><au>Cialenco, Igor</au><au>Drapeau, Samuel</au><au>Karliczek, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic assessment indices</atitle><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle><date>2016-01-02</date><risdate>2016</risdate><volume>88</volume><issue>1</issue><spage>1</spage><epage>44</epage><pages>1-44</pages><issn>1744-2508</issn><eissn>1744-2516</eissn><abstract>This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, allows us to significantly generalize existing results is the theory of -modules. In the first part of the paper we develop the general theory and provide a robust representation of conditional assessment indices, and in the second part we apply this theory to dynamic acceptability indices acting on stochastic processes.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17442508.2015.1026346</doi><tpages>44</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-2508
ispartof Stochastics (Abingdon, Eng. : 2005), 2016-01, Vol.88 (1), p.1-44
issn 1744-2508
1744-2516
language eng
recordid cdi_crossref_primary_10_1080_17442508_2015_1026346
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Acceptability
assessment indices
Assessments
certainty equivalent
dynamic acceptability index
dynamic GLR
dynamic measures of performance
dynamic risk measures
Dynamic structural analysis
Dynamic tests
Dynamics
Mathematical analysis
Representations
Stochastic processes
strong time consistency
title Dynamic assessment indices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20assessment%20indices&rft.jtitle=Stochastics%20(Abingdon,%20Eng.%20:%202005)&rft.au=Bielecki,%20Tomasz%20R.&rft.date=2016-01-02&rft.volume=88&rft.issue=1&rft.spage=1&rft.epage=44&rft.pages=1-44&rft.issn=1744-2508&rft.eissn=1744-2516&rft_id=info:doi/10.1080/17442508.2015.1026346&rft_dat=%3Cproquest_cross%3E4050390491%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787782894&rft_id=info:pmid/&rfr_iscdi=true