Loading…
Dynamic assessment indices
This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, allows us to significantly generalize existing results is the theory of -modules. In the fi...
Saved in:
Published in: | Stochastics (Abingdon, Eng. : 2005) Eng. : 2005), 2016-01, Vol.88 (1), p.1-44 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3 |
container_end_page | 44 |
container_issue | 1 |
container_start_page | 1 |
container_title | Stochastics (Abingdon, Eng. : 2005) |
container_volume | 88 |
creator | Bielecki, Tomasz R. Cialenco, Igor Drapeau, Samuel Karliczek, Martin |
description | This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, allows us to significantly generalize existing results is the theory of
-modules. In the first part of the paper we develop the general theory and provide a robust representation of conditional assessment indices, and in the second part we apply this theory to dynamic acceptability indices acting on stochastic processes. |
doi_str_mv | 10.1080/17442508.2015.1026346 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17442508_2015_1026346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4050390491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_QBAKbtxMvXmnO6U-oeBG1yGTSSBlJlOTGaT_3pRWFy5c3cvhO-deDkJXGOYYFNxiyRjhoOYEMC8SEZSJIzTZ6RXhWBz_7qBO0VnOawBGKIUJunzYRtMFOzM5u5w7F4dZiE2wLp-jE2_a7C4Oc4o-nh7fly_V6u35dXm_qixjeKgMdYKAwRyzmhojOWMcQNbeNaCYl-W-EDWV3jeNY97gBQMpMZdKUm-bmk7RzT53k_rP0eVBdyFb17Ymun7MGssFJZwLqQp6_Qdd92OK5btCKSkVUQtWKL6nbOpzTs7rTQqdSVuNQe8a0z-N6V1j-tBY8d3tfSH6PnXmq09towezbfvkk4k2ZE3_j_gGUXVvPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787782894</pqid></control><display><type>article</type><title>Dynamic assessment indices</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Bielecki, Tomasz R. ; Cialenco, Igor ; Drapeau, Samuel ; Karliczek, Martin</creator><creatorcontrib>Bielecki, Tomasz R. ; Cialenco, Igor ; Drapeau, Samuel ; Karliczek, Martin</creatorcontrib><description>This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, allows us to significantly generalize existing results is the theory of
-modules. In the first part of the paper we develop the general theory and provide a robust representation of conditional assessment indices, and in the second part we apply this theory to dynamic acceptability indices acting on stochastic processes.</description><identifier>ISSN: 1744-2508</identifier><identifier>EISSN: 1744-2516</identifier><identifier>DOI: 10.1080/17442508.2015.1026346</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Acceptability ; assessment indices ; Assessments ; certainty equivalent ; dynamic acceptability index ; dynamic GLR ; dynamic measures of performance ; dynamic risk measures ; Dynamic structural analysis ; Dynamic tests ; Dynamics ; Mathematical analysis ; Representations ; Stochastic processes ; strong time consistency</subject><ispartof>Stochastics (Abingdon, Eng. : 2005), 2016-01, Vol.88 (1), p.1-44</ispartof><rights>2015 Taylor & Francis 2015</rights><rights>2015 Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3</citedby><cites>FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Bielecki, Tomasz R.</creatorcontrib><creatorcontrib>Cialenco, Igor</creatorcontrib><creatorcontrib>Drapeau, Samuel</creatorcontrib><creatorcontrib>Karliczek, Martin</creatorcontrib><title>Dynamic assessment indices</title><title>Stochastics (Abingdon, Eng. : 2005)</title><description>This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, allows us to significantly generalize existing results is the theory of
-modules. In the first part of the paper we develop the general theory and provide a robust representation of conditional assessment indices, and in the second part we apply this theory to dynamic acceptability indices acting on stochastic processes.</description><subject>Acceptability</subject><subject>assessment indices</subject><subject>Assessments</subject><subject>certainty equivalent</subject><subject>dynamic acceptability index</subject><subject>dynamic GLR</subject><subject>dynamic measures of performance</subject><subject>dynamic risk measures</subject><subject>Dynamic structural analysis</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>Stochastic processes</subject><subject>strong time consistency</subject><issn>1744-2508</issn><issn>1744-2516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_QBAKbtxMvXmnO6U-oeBG1yGTSSBlJlOTGaT_3pRWFy5c3cvhO-deDkJXGOYYFNxiyRjhoOYEMC8SEZSJIzTZ6RXhWBz_7qBO0VnOawBGKIUJunzYRtMFOzM5u5w7F4dZiE2wLp-jE2_a7C4Oc4o-nh7fly_V6u35dXm_qixjeKgMdYKAwRyzmhojOWMcQNbeNaCYl-W-EDWV3jeNY97gBQMpMZdKUm-bmk7RzT53k_rP0eVBdyFb17Ymun7MGssFJZwLqQp6_Qdd92OK5btCKSkVUQtWKL6nbOpzTs7rTQqdSVuNQe8a0z-N6V1j-tBY8d3tfSH6PnXmq09towezbfvkk4k2ZE3_j_gGUXVvPw</recordid><startdate>20160102</startdate><enddate>20160102</enddate><creator>Bielecki, Tomasz R.</creator><creator>Cialenco, Igor</creator><creator>Drapeau, Samuel</creator><creator>Karliczek, Martin</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160102</creationdate><title>Dynamic assessment indices</title><author>Bielecki, Tomasz R. ; Cialenco, Igor ; Drapeau, Samuel ; Karliczek, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acceptability</topic><topic>assessment indices</topic><topic>Assessments</topic><topic>certainty equivalent</topic><topic>dynamic acceptability index</topic><topic>dynamic GLR</topic><topic>dynamic measures of performance</topic><topic>dynamic risk measures</topic><topic>Dynamic structural analysis</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>Stochastic processes</topic><topic>strong time consistency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bielecki, Tomasz R.</creatorcontrib><creatorcontrib>Cialenco, Igor</creatorcontrib><creatorcontrib>Drapeau, Samuel</creatorcontrib><creatorcontrib>Karliczek, Martin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bielecki, Tomasz R.</au><au>Cialenco, Igor</au><au>Drapeau, Samuel</au><au>Karliczek, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic assessment indices</atitle><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle><date>2016-01-02</date><risdate>2016</risdate><volume>88</volume><issue>1</issue><spage>1</spage><epage>44</epage><pages>1-44</pages><issn>1744-2508</issn><eissn>1744-2516</eissn><abstract>This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, allows us to significantly generalize existing results is the theory of
-modules. In the first part of the paper we develop the general theory and provide a robust representation of conditional assessment indices, and in the second part we apply this theory to dynamic acceptability indices acting on stochastic processes.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/17442508.2015.1026346</doi><tpages>44</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-2508 |
ispartof | Stochastics (Abingdon, Eng. : 2005), 2016-01, Vol.88 (1), p.1-44 |
issn | 1744-2508 1744-2516 |
language | eng |
recordid | cdi_crossref_primary_10_1080_17442508_2015_1026346 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Acceptability assessment indices Assessments certainty equivalent dynamic acceptability index dynamic GLR dynamic measures of performance dynamic risk measures Dynamic structural analysis Dynamic tests Dynamics Mathematical analysis Representations Stochastic processes strong time consistency |
title | Dynamic assessment indices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20assessment%20indices&rft.jtitle=Stochastics%20(Abingdon,%20Eng.%20:%202005)&rft.au=Bielecki,%20Tomasz%20R.&rft.date=2016-01-02&rft.volume=88&rft.issue=1&rft.spage=1&rft.epage=44&rft.pages=1-44&rft.issn=1744-2508&rft.eissn=1744-2516&rft_id=info:doi/10.1080/17442508.2015.1026346&rft_dat=%3Cproquest_cross%3E4050390491%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-a3e620a1514b3aa75445007bfed084f751666b37ffdde4fa194077157873fcdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787782894&rft_id=info:pmid/&rfr_iscdi=true |