Loading…
Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method
Manned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are dete...
Saved in:
Published in: | Ships and offshore structures 2018-08, Vol.13 (6), p.601-616 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143 |
container_end_page | 616 |
container_issue | 6 |
container_start_page | 601 |
container_title | Ships and offshore structures |
container_volume | 13 |
creator | SB, Pranesh Kumar, Deepak V, Anantha Subramanian D, Sathianarayanan GA, Ramadass |
description | Manned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are determined using ASME PVHO-1. Analysis of the viewport for given basic dimensions, shows that the corners of the low-pressure face of the viewport window and the notch regions of the flange are subjected to high stresses. Using the fillet radius method at the notch region results in stress reduction by 64%. The biological growth method helps in getting the naturally optimised shape at the corner. The use of the biological growth method for structural shape modification reduces the stress acting on the acrylic viewport by 71%. The same method applied to the flange notch region reduces its sharpness and the stress there by a considerable amount. This also helps in increasing the number of cycles of operation. |
doi_str_mv | 10.1080/17445302.2018.1440885 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17445302_2018_1440885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051663572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143</originalsourceid><addsrcrecordid>eNp9kEuL2zAUhU2ZQjNpf0JB0LVTPR151xLmBYFZTAvdCVmWEgXZcu-1J-Tf12ky21ndw-GcA_criq-MrhjV9DtbS6kE5StOmV4xKanW6kOxYGslS874n5uzlrI8hz4Vt4gHStVaa7ko-pcRJjdOYBOxvU0njEhyIDjsPUQ3uwN4xAk82U8pkdfoj0OGkYQMpLN971uCU9N5wNgkj2TC2O9IE3PKu__9HeTjuCedH_e5_Vx8DDah_3K9y-L3_d2vzWO5fX542vzclk5oNZbetrWX3NdaNZJyLYLkQahWupZW3jauopX2LaspE8HVjQuCs5Zz1ah6tqVYFt8uuwPkv5PH0RzyBPN_aDhVrKqEWvM5pS4pBxkRfDADxM7CyTBqzmjNG1pzRmuuaOfej0sv9jOGzh4zpNaM9pQyBLC9i2jE-xP_ALUVgv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051663572</pqid></control><display><type>article</type><title>Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method</title><source>Taylor and Francis Science and Technology Collection</source><creator>SB, Pranesh ; Kumar, Deepak ; V, Anantha Subramanian ; D, Sathianarayanan ; GA, Ramadass</creator><creatorcontrib>SB, Pranesh ; Kumar, Deepak ; V, Anantha Subramanian ; D, Sathianarayanan ; GA, Ramadass</creatorcontrib><description>Manned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are determined using ASME PVHO-1. Analysis of the viewport for given basic dimensions, shows that the corners of the low-pressure face of the viewport window and the notch regions of the flange are subjected to high stresses. Using the fillet radius method at the notch region results in stress reduction by 64%. The biological growth method helps in getting the naturally optimised shape at the corner. The use of the biological growth method for structural shape modification reduces the stress acting on the acrylic viewport by 71%. The same method applied to the flange notch region reduces its sharpness and the stress there by a considerable amount. This also helps in increasing the number of cycles of operation.</description><identifier>ISSN: 1744-5302</identifier><identifier>EISSN: 1754-212X</identifier><identifier>DOI: 10.1080/17445302.2018.1440885</identifier><language>eng</language><publisher>Cambridge: Taylor & Francis</publisher><subject>biological growth method ; Dimensions ; Exploration ; finite element analysis ; Fish fillets ; Growth ; Manned submersible ; Manned submersibles ; Methods ; Oceans ; Seafoods ; Shape ; Sharpness ; spherical pressure hull ; Stress ; Stresses ; Structural analysis ; Submarines ; Submersibles ; Titanium alloy ; viewport</subject><ispartof>Ships and offshore structures, 2018-08, Vol.13 (6), p.601-616</ispartof><rights>2018 Informa UK Limited, trading as Taylor & Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143</citedby><cites>FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143</cites><orcidid>0000-0003-2151-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>SB, Pranesh</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>V, Anantha Subramanian</creatorcontrib><creatorcontrib>D, Sathianarayanan</creatorcontrib><creatorcontrib>GA, Ramadass</creatorcontrib><title>Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method</title><title>Ships and offshore structures</title><description>Manned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are determined using ASME PVHO-1. Analysis of the viewport for given basic dimensions, shows that the corners of the low-pressure face of the viewport window and the notch regions of the flange are subjected to high stresses. Using the fillet radius method at the notch region results in stress reduction by 64%. The biological growth method helps in getting the naturally optimised shape at the corner. The use of the biological growth method for structural shape modification reduces the stress acting on the acrylic viewport by 71%. The same method applied to the flange notch region reduces its sharpness and the stress there by a considerable amount. This also helps in increasing the number of cycles of operation.</description><subject>biological growth method</subject><subject>Dimensions</subject><subject>Exploration</subject><subject>finite element analysis</subject><subject>Fish fillets</subject><subject>Growth</subject><subject>Manned submersible</subject><subject>Manned submersibles</subject><subject>Methods</subject><subject>Oceans</subject><subject>Seafoods</subject><subject>Shape</subject><subject>Sharpness</subject><subject>spherical pressure hull</subject><subject>Stress</subject><subject>Stresses</subject><subject>Structural analysis</subject><subject>Submarines</subject><subject>Submersibles</subject><subject>Titanium alloy</subject><subject>viewport</subject><issn>1744-5302</issn><issn>1754-212X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEuL2zAUhU2ZQjNpf0JB0LVTPR151xLmBYFZTAvdCVmWEgXZcu-1J-Tf12ky21ndw-GcA_criq-MrhjV9DtbS6kE5StOmV4xKanW6kOxYGslS874n5uzlrI8hz4Vt4gHStVaa7ko-pcRJjdOYBOxvU0njEhyIDjsPUQ3uwN4xAk82U8pkdfoj0OGkYQMpLN971uCU9N5wNgkj2TC2O9IE3PKu__9HeTjuCedH_e5_Vx8DDah_3K9y-L3_d2vzWO5fX542vzclk5oNZbetrWX3NdaNZJyLYLkQahWupZW3jauopX2LaspE8HVjQuCs5Zz1ah6tqVYFt8uuwPkv5PH0RzyBPN_aDhVrKqEWvM5pS4pBxkRfDADxM7CyTBqzmjNG1pzRmuuaOfej0sv9jOGzh4zpNaM9pQyBLC9i2jE-xP_ALUVgv0</recordid><startdate>20180818</startdate><enddate>20180818</enddate><creator>SB, Pranesh</creator><creator>Kumar, Deepak</creator><creator>V, Anantha Subramanian</creator><creator>D, Sathianarayanan</creator><creator>GA, Ramadass</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-2151-8397</orcidid></search><sort><creationdate>20180818</creationdate><title>Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method</title><author>SB, Pranesh ; Kumar, Deepak ; V, Anantha Subramanian ; D, Sathianarayanan ; GA, Ramadass</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>biological growth method</topic><topic>Dimensions</topic><topic>Exploration</topic><topic>finite element analysis</topic><topic>Fish fillets</topic><topic>Growth</topic><topic>Manned submersible</topic><topic>Manned submersibles</topic><topic>Methods</topic><topic>Oceans</topic><topic>Seafoods</topic><topic>Shape</topic><topic>Sharpness</topic><topic>spherical pressure hull</topic><topic>Stress</topic><topic>Stresses</topic><topic>Structural analysis</topic><topic>Submarines</topic><topic>Submersibles</topic><topic>Titanium alloy</topic><topic>viewport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SB, Pranesh</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>V, Anantha Subramanian</creatorcontrib><creatorcontrib>D, Sathianarayanan</creatorcontrib><creatorcontrib>GA, Ramadass</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ships and offshore structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SB, Pranesh</au><au>Kumar, Deepak</au><au>V, Anantha Subramanian</au><au>D, Sathianarayanan</au><au>GA, Ramadass</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method</atitle><jtitle>Ships and offshore structures</jtitle><date>2018-08-18</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>601</spage><epage>616</epage><pages>601-616</pages><issn>1744-5302</issn><eissn>1754-212X</eissn><abstract>Manned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are determined using ASME PVHO-1. Analysis of the viewport for given basic dimensions, shows that the corners of the low-pressure face of the viewport window and the notch regions of the flange are subjected to high stresses. Using the fillet radius method at the notch region results in stress reduction by 64%. The biological growth method helps in getting the naturally optimised shape at the corner. The use of the biological growth method for structural shape modification reduces the stress acting on the acrylic viewport by 71%. The same method applied to the flange notch region reduces its sharpness and the stress there by a considerable amount. This also helps in increasing the number of cycles of operation.</abstract><cop>Cambridge</cop><pub>Taylor & Francis</pub><doi>10.1080/17445302.2018.1440885</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2151-8397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-5302 |
ispartof | Ships and offshore structures, 2018-08, Vol.13 (6), p.601-616 |
issn | 1744-5302 1754-212X |
language | eng |
recordid | cdi_crossref_primary_10_1080_17445302_2018_1440885 |
source | Taylor and Francis Science and Technology Collection |
subjects | biological growth method Dimensions Exploration finite element analysis Fish fillets Growth Manned submersible Manned submersibles Methods Oceans Seafoods Shape Sharpness spherical pressure hull Stress Stresses Structural analysis Submarines Submersibles Titanium alloy viewport |
title | Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20analysis%20of%20spherical%20pressure%20hull%20viewport%20for%20manned%20submersibles%20using%20biological%20growth%20method&rft.jtitle=Ships%20and%20offshore%20structures&rft.au=SB,%20Pranesh&rft.date=2018-08-18&rft.volume=13&rft.issue=6&rft.spage=601&rft.epage=616&rft.pages=601-616&rft.issn=1744-5302&rft.eissn=1754-212X&rft_id=info:doi/10.1080/17445302.2018.1440885&rft_dat=%3Cproquest_cross%3E2051663572%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2051663572&rft_id=info:pmid/&rfr_iscdi=true |