Loading…

Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method

Manned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are dete...

Full description

Saved in:
Bibliographic Details
Published in:Ships and offshore structures 2018-08, Vol.13 (6), p.601-616
Main Authors: SB, Pranesh, Kumar, Deepak, V, Anantha Subramanian, D, Sathianarayanan, GA, Ramadass
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143
cites cdi_FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143
container_end_page 616
container_issue 6
container_start_page 601
container_title Ships and offshore structures
container_volume 13
creator SB, Pranesh
Kumar, Deepak
V, Anantha Subramanian
D, Sathianarayanan
GA, Ramadass
description Manned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are determined using ASME PVHO-1. Analysis of the viewport for given basic dimensions, shows that the corners of the low-pressure face of the viewport window and the notch regions of the flange are subjected to high stresses. Using the fillet radius method at the notch region results in stress reduction by 64%. The biological growth method helps in getting the naturally optimised shape at the corner. The use of the biological growth method for structural shape modification reduces the stress acting on the acrylic viewport by 71%. The same method applied to the flange notch region reduces its sharpness and the stress there by a considerable amount. This also helps in increasing the number of cycles of operation.
doi_str_mv 10.1080/17445302.2018.1440885
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17445302_2018_1440885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051663572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143</originalsourceid><addsrcrecordid>eNp9kEuL2zAUhU2ZQjNpf0JB0LVTPR151xLmBYFZTAvdCVmWEgXZcu-1J-Tf12ky21ndw-GcA_criq-MrhjV9DtbS6kE5StOmV4xKanW6kOxYGslS874n5uzlrI8hz4Vt4gHStVaa7ko-pcRJjdOYBOxvU0njEhyIDjsPUQ3uwN4xAk82U8pkdfoj0OGkYQMpLN971uCU9N5wNgkj2TC2O9IE3PKu__9HeTjuCedH_e5_Vx8DDah_3K9y-L3_d2vzWO5fX542vzclk5oNZbetrWX3NdaNZJyLYLkQahWupZW3jauopX2LaspE8HVjQuCs5Zz1ah6tqVYFt8uuwPkv5PH0RzyBPN_aDhVrKqEWvM5pS4pBxkRfDADxM7CyTBqzmjNG1pzRmuuaOfej0sv9jOGzh4zpNaM9pQyBLC9i2jE-xP_ALUVgv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051663572</pqid></control><display><type>article</type><title>Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method</title><source>Taylor and Francis Science and Technology Collection</source><creator>SB, Pranesh ; Kumar, Deepak ; V, Anantha Subramanian ; D, Sathianarayanan ; GA, Ramadass</creator><creatorcontrib>SB, Pranesh ; Kumar, Deepak ; V, Anantha Subramanian ; D, Sathianarayanan ; GA, Ramadass</creatorcontrib><description>Manned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are determined using ASME PVHO-1. Analysis of the viewport for given basic dimensions, shows that the corners of the low-pressure face of the viewport window and the notch regions of the flange are subjected to high stresses. Using the fillet radius method at the notch region results in stress reduction by 64%. The biological growth method helps in getting the naturally optimised shape at the corner. The use of the biological growth method for structural shape modification reduces the stress acting on the acrylic viewport by 71%. The same method applied to the flange notch region reduces its sharpness and the stress there by a considerable amount. This also helps in increasing the number of cycles of operation.</description><identifier>ISSN: 1744-5302</identifier><identifier>EISSN: 1754-212X</identifier><identifier>DOI: 10.1080/17445302.2018.1440885</identifier><language>eng</language><publisher>Cambridge: Taylor &amp; Francis</publisher><subject>biological growth method ; Dimensions ; Exploration ; finite element analysis ; Fish fillets ; Growth ; Manned submersible ; Manned submersibles ; Methods ; Oceans ; Seafoods ; Shape ; Sharpness ; spherical pressure hull ; Stress ; Stresses ; Structural analysis ; Submarines ; Submersibles ; Titanium alloy ; viewport</subject><ispartof>Ships and offshore structures, 2018-08, Vol.13 (6), p.601-616</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143</citedby><cites>FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143</cites><orcidid>0000-0003-2151-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>SB, Pranesh</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>V, Anantha Subramanian</creatorcontrib><creatorcontrib>D, Sathianarayanan</creatorcontrib><creatorcontrib>GA, Ramadass</creatorcontrib><title>Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method</title><title>Ships and offshore structures</title><description>Manned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are determined using ASME PVHO-1. Analysis of the viewport for given basic dimensions, shows that the corners of the low-pressure face of the viewport window and the notch regions of the flange are subjected to high stresses. Using the fillet radius method at the notch region results in stress reduction by 64%. The biological growth method helps in getting the naturally optimised shape at the corner. The use of the biological growth method for structural shape modification reduces the stress acting on the acrylic viewport by 71%. The same method applied to the flange notch region reduces its sharpness and the stress there by a considerable amount. This also helps in increasing the number of cycles of operation.</description><subject>biological growth method</subject><subject>Dimensions</subject><subject>Exploration</subject><subject>finite element analysis</subject><subject>Fish fillets</subject><subject>Growth</subject><subject>Manned submersible</subject><subject>Manned submersibles</subject><subject>Methods</subject><subject>Oceans</subject><subject>Seafoods</subject><subject>Shape</subject><subject>Sharpness</subject><subject>spherical pressure hull</subject><subject>Stress</subject><subject>Stresses</subject><subject>Structural analysis</subject><subject>Submarines</subject><subject>Submersibles</subject><subject>Titanium alloy</subject><subject>viewport</subject><issn>1744-5302</issn><issn>1754-212X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEuL2zAUhU2ZQjNpf0JB0LVTPR151xLmBYFZTAvdCVmWEgXZcu-1J-Tf12ky21ndw-GcA_criq-MrhjV9DtbS6kE5StOmV4xKanW6kOxYGslS874n5uzlrI8hz4Vt4gHStVaa7ko-pcRJjdOYBOxvU0njEhyIDjsPUQ3uwN4xAk82U8pkdfoj0OGkYQMpLN971uCU9N5wNgkj2TC2O9IE3PKu__9HeTjuCedH_e5_Vx8DDah_3K9y-L3_d2vzWO5fX542vzclk5oNZbetrWX3NdaNZJyLYLkQahWupZW3jauopX2LaspE8HVjQuCs5Zz1ah6tqVYFt8uuwPkv5PH0RzyBPN_aDhVrKqEWvM5pS4pBxkRfDADxM7CyTBqzmjNG1pzRmuuaOfej0sv9jOGzh4zpNaM9pQyBLC9i2jE-xP_ALUVgv0</recordid><startdate>20180818</startdate><enddate>20180818</enddate><creator>SB, Pranesh</creator><creator>Kumar, Deepak</creator><creator>V, Anantha Subramanian</creator><creator>D, Sathianarayanan</creator><creator>GA, Ramadass</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-2151-8397</orcidid></search><sort><creationdate>20180818</creationdate><title>Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method</title><author>SB, Pranesh ; Kumar, Deepak ; V, Anantha Subramanian ; D, Sathianarayanan ; GA, Ramadass</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>biological growth method</topic><topic>Dimensions</topic><topic>Exploration</topic><topic>finite element analysis</topic><topic>Fish fillets</topic><topic>Growth</topic><topic>Manned submersible</topic><topic>Manned submersibles</topic><topic>Methods</topic><topic>Oceans</topic><topic>Seafoods</topic><topic>Shape</topic><topic>Sharpness</topic><topic>spherical pressure hull</topic><topic>Stress</topic><topic>Stresses</topic><topic>Structural analysis</topic><topic>Submarines</topic><topic>Submersibles</topic><topic>Titanium alloy</topic><topic>viewport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SB, Pranesh</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>V, Anantha Subramanian</creatorcontrib><creatorcontrib>D, Sathianarayanan</creatorcontrib><creatorcontrib>GA, Ramadass</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ships and offshore structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SB, Pranesh</au><au>Kumar, Deepak</au><au>V, Anantha Subramanian</au><au>D, Sathianarayanan</au><au>GA, Ramadass</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method</atitle><jtitle>Ships and offshore structures</jtitle><date>2018-08-18</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>601</spage><epage>616</epage><pages>601-616</pages><issn>1744-5302</issn><eissn>1754-212X</eissn><abstract>Manned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are determined using ASME PVHO-1. Analysis of the viewport for given basic dimensions, shows that the corners of the low-pressure face of the viewport window and the notch regions of the flange are subjected to high stresses. Using the fillet radius method at the notch region results in stress reduction by 64%. The biological growth method helps in getting the naturally optimised shape at the corner. The use of the biological growth method for structural shape modification reduces the stress acting on the acrylic viewport by 71%. The same method applied to the flange notch region reduces its sharpness and the stress there by a considerable amount. This also helps in increasing the number of cycles of operation.</abstract><cop>Cambridge</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17445302.2018.1440885</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2151-8397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-5302
ispartof Ships and offshore structures, 2018-08, Vol.13 (6), p.601-616
issn 1744-5302
1754-212X
language eng
recordid cdi_crossref_primary_10_1080_17445302_2018_1440885
source Taylor and Francis Science and Technology Collection
subjects biological growth method
Dimensions
Exploration
finite element analysis
Fish fillets
Growth
Manned submersible
Manned submersibles
Methods
Oceans
Seafoods
Shape
Sharpness
spherical pressure hull
Stress
Stresses
Structural analysis
Submarines
Submersibles
Titanium alloy
viewport
title Structural analysis of spherical pressure hull viewport for manned submersibles using biological growth method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20analysis%20of%20spherical%20pressure%20hull%20viewport%20for%20manned%20submersibles%20using%20biological%20growth%20method&rft.jtitle=Ships%20and%20offshore%20structures&rft.au=SB,%20Pranesh&rft.date=2018-08-18&rft.volume=13&rft.issue=6&rft.spage=601&rft.epage=616&rft.pages=601-616&rft.issn=1744-5302&rft.eissn=1754-212X&rft_id=info:doi/10.1080/17445302.2018.1440885&rft_dat=%3Cproquest_cross%3E2051663572%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-ead9e42e985b40283f42f35d4cd06eabc6068ed19013fc9bcf321d225b59ed143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2051663572&rft_id=info:pmid/&rfr_iscdi=true