Loading…
Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory
The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal lo...
Saved in:
Published in: | Ships and offshore structures 2019-07, Vol.14 (5), p.501-509 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43 |
container_end_page | 509 |
container_issue | 5 |
container_start_page | 501 |
container_title | Ships and offshore structures |
container_volume | 14 |
creator | Heydari Nosrat Abadi, Mohammad Zamani Nouri, Alireza |
description | The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal load and the material properties are considered temperature-dependent. The well-known Navier-Stokes equation is used for obtaining the applied force of fluid to the concrete pipe. The fluid is mixed by AL
2
O
3
nanoparticles where the mixture rule is used for obtaining the effective density and viscosity. Based on higher order shear deformation theory of cylindrical shells, the displacement field of the pipe is considered. Utilising the energy method and Hamilton's principal, the motion equations are derived. The Galerkin method is applied for obtaining the critical fluid velocity of the structure. The effects of different parameters such as fluid velocity, volume per cent of nanoparticle in fluid, geometrical parameters of the pipe and temperature gradient are discussed on the critical fluid velocity of the structure. Numerical results indicate that with increasing the volume per cent of nanoparticle in fluid, the critical fluid velocity increase. |
doi_str_mv | 10.1080/17445302.2018.1512357 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17445302_2018_1512357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212830001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43</originalsourceid><addsrcrecordid>eNp9kc1u3SAQha2qkZqmeYRKSF37FgzEeNcq6p8UtZtWyg5hGMdENrgDTuqn6asG595uu2EQ-s45Yk5VvWX0wKii71krhOS0OTSUqQOTrOGyfVGds1aKumHN7cv9LkS9Q6-q1yndUypbpcR59ff7OgN6ayaS8uo2MkQkFn1-fhqm1TvyAFO0Pm_EB5JhXgBNXhFqBwsEByGTxS-QiI3hATYf7k662f8BRx59HkkwIS4Gi-tUwDXt0OjvRkAS0ZUzjWCQOCjxs8k-lqQRIm5vqrPBTAkuT_Oi-vX508_rr_XNjy_frj_e1JZzlethsKKzRhrXDrTrbTG6Ukp1iveOCTDSsa6VvbOigZ5dGS56cA3tjFWd5Vbwi-rd0XfB-HuFlPV9XDGUSN2UFSpOKWWFkkfKYkwJYdAL-tngphnVexf6Xxd670Kfuii6D0edD88ffIw4OZ3NNkUc0ATrk-b_t3gCBYWWcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212830001</pqid></control><display><type>article</type><title>Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory</title><source>Taylor and Francis Science and Technology Collection</source><creator>Heydari Nosrat Abadi, Mohammad ; Zamani Nouri, Alireza</creator><creatorcontrib>Heydari Nosrat Abadi, Mohammad ; Zamani Nouri, Alireza</creatorcontrib><description>The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal load and the material properties are considered temperature-dependent. The well-known Navier-Stokes equation is used for obtaining the applied force of fluid to the concrete pipe. The fluid is mixed by AL
2
O
3
nanoparticles where the mixture rule is used for obtaining the effective density and viscosity. Based on higher order shear deformation theory of cylindrical shells, the displacement field of the pipe is considered. Utilising the energy method and Hamilton's principal, the motion equations are derived. The Galerkin method is applied for obtaining the critical fluid velocity of the structure. The effects of different parameters such as fluid velocity, volume per cent of nanoparticle in fluid, geometrical parameters of the pipe and temperature gradient are discussed on the critical fluid velocity of the structure. Numerical results indicate that with increasing the volume per cent of nanoparticle in fluid, the critical fluid velocity increase.</description><identifier>ISSN: 1744-5302</identifier><identifier>EISSN: 1754-212X</identifier><identifier>DOI: 10.1080/17445302.2018.1512357</identifier><language>eng</language><publisher>Cambridge: Taylor & Francis</publisher><subject>Computational fluid dynamics ; Concrete pipes ; Conveying ; Critical fluid velocity ; Cylindrical shells ; Deformation ; Deformation effects ; Equations of motion ; fluid-nanoparticle mixture ; Galerkin method ; Gas pipelines ; higher order shear deformation theory ; Material properties ; Nanoparticles ; Navier-Stokes equations ; numerical method ; Offshore ; Offshore engineering ; Parameters ; Petroleum pipelines ; Pipelines ; Pipes ; Shear ; Shear deformation ; Simulation ; Submarine pipelines ; Temperature dependence ; Temperature gradients ; temperature-dependent ; Thermal analysis ; Transportation ; Velocity ; Viscosity ; Viscous fluids</subject><ispartof>Ships and offshore structures, 2019-07, Vol.14 (5), p.501-509</ispartof><rights>2018 Informa UK Limited, trading as Taylor & Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43</citedby><cites>FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Heydari Nosrat Abadi, Mohammad</creatorcontrib><creatorcontrib>Zamani Nouri, Alireza</creatorcontrib><title>Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory</title><title>Ships and offshore structures</title><description>The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal load and the material properties are considered temperature-dependent. The well-known Navier-Stokes equation is used for obtaining the applied force of fluid to the concrete pipe. The fluid is mixed by AL
2
O
3
nanoparticles where the mixture rule is used for obtaining the effective density and viscosity. Based on higher order shear deformation theory of cylindrical shells, the displacement field of the pipe is considered. Utilising the energy method and Hamilton's principal, the motion equations are derived. The Galerkin method is applied for obtaining the critical fluid velocity of the structure. The effects of different parameters such as fluid velocity, volume per cent of nanoparticle in fluid, geometrical parameters of the pipe and temperature gradient are discussed on the critical fluid velocity of the structure. Numerical results indicate that with increasing the volume per cent of nanoparticle in fluid, the critical fluid velocity increase.</description><subject>Computational fluid dynamics</subject><subject>Concrete pipes</subject><subject>Conveying</subject><subject>Critical fluid velocity</subject><subject>Cylindrical shells</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Equations of motion</subject><subject>fluid-nanoparticle mixture</subject><subject>Galerkin method</subject><subject>Gas pipelines</subject><subject>higher order shear deformation theory</subject><subject>Material properties</subject><subject>Nanoparticles</subject><subject>Navier-Stokes equations</subject><subject>numerical method</subject><subject>Offshore</subject><subject>Offshore engineering</subject><subject>Parameters</subject><subject>Petroleum pipelines</subject><subject>Pipelines</subject><subject>Pipes</subject><subject>Shear</subject><subject>Shear deformation</subject><subject>Simulation</subject><subject>Submarine pipelines</subject><subject>Temperature dependence</subject><subject>Temperature gradients</subject><subject>temperature-dependent</subject><subject>Thermal analysis</subject><subject>Transportation</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Viscous fluids</subject><issn>1744-5302</issn><issn>1754-212X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u3SAQha2qkZqmeYRKSF37FgzEeNcq6p8UtZtWyg5hGMdENrgDTuqn6asG595uu2EQ-s45Yk5VvWX0wKii71krhOS0OTSUqQOTrOGyfVGds1aKumHN7cv9LkS9Q6-q1yndUypbpcR59ff7OgN6ayaS8uo2MkQkFn1-fhqm1TvyAFO0Pm_EB5JhXgBNXhFqBwsEByGTxS-QiI3hATYf7k662f8BRx59HkkwIS4Gi-tUwDXt0OjvRkAS0ZUzjWCQOCjxs8k-lqQRIm5vqrPBTAkuT_Oi-vX508_rr_XNjy_frj_e1JZzlethsKKzRhrXDrTrbTG6Ukp1iveOCTDSsa6VvbOigZ5dGS56cA3tjFWd5Vbwi-rd0XfB-HuFlPV9XDGUSN2UFSpOKWWFkkfKYkwJYdAL-tngphnVexf6Xxd670Kfuii6D0edD88ffIw4OZ3NNkUc0ATrk-b_t3gCBYWWcw</recordid><startdate>20190704</startdate><enddate>20190704</enddate><creator>Heydari Nosrat Abadi, Mohammad</creator><creator>Zamani Nouri, Alireza</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20190704</creationdate><title>Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory</title><author>Heydari Nosrat Abadi, Mohammad ; Zamani Nouri, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Concrete pipes</topic><topic>Conveying</topic><topic>Critical fluid velocity</topic><topic>Cylindrical shells</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Equations of motion</topic><topic>fluid-nanoparticle mixture</topic><topic>Galerkin method</topic><topic>Gas pipelines</topic><topic>higher order shear deformation theory</topic><topic>Material properties</topic><topic>Nanoparticles</topic><topic>Navier-Stokes equations</topic><topic>numerical method</topic><topic>Offshore</topic><topic>Offshore engineering</topic><topic>Parameters</topic><topic>Petroleum pipelines</topic><topic>Pipelines</topic><topic>Pipes</topic><topic>Shear</topic><topic>Shear deformation</topic><topic>Simulation</topic><topic>Submarine pipelines</topic><topic>Temperature dependence</topic><topic>Temperature gradients</topic><topic>temperature-dependent</topic><topic>Thermal analysis</topic><topic>Transportation</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heydari Nosrat Abadi, Mohammad</creatorcontrib><creatorcontrib>Zamani Nouri, Alireza</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ships and offshore structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heydari Nosrat Abadi, Mohammad</au><au>Zamani Nouri, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory</atitle><jtitle>Ships and offshore structures</jtitle><date>2019-07-04</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><spage>501</spage><epage>509</epage><pages>501-509</pages><issn>1744-5302</issn><eissn>1754-212X</eissn><abstract>The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal load and the material properties are considered temperature-dependent. The well-known Navier-Stokes equation is used for obtaining the applied force of fluid to the concrete pipe. The fluid is mixed by AL
2
O
3
nanoparticles where the mixture rule is used for obtaining the effective density and viscosity. Based on higher order shear deformation theory of cylindrical shells, the displacement field of the pipe is considered. Utilising the energy method and Hamilton's principal, the motion equations are derived. The Galerkin method is applied for obtaining the critical fluid velocity of the structure. The effects of different parameters such as fluid velocity, volume per cent of nanoparticle in fluid, geometrical parameters of the pipe and temperature gradient are discussed on the critical fluid velocity of the structure. Numerical results indicate that with increasing the volume per cent of nanoparticle in fluid, the critical fluid velocity increase.</abstract><cop>Cambridge</cop><pub>Taylor & Francis</pub><doi>10.1080/17445302.2018.1512357</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-5302 |
ispartof | Ships and offshore structures, 2019-07, Vol.14 (5), p.501-509 |
issn | 1744-5302 1754-212X |
language | eng |
recordid | cdi_crossref_primary_10_1080_17445302_2018_1512357 |
source | Taylor and Francis Science and Technology Collection |
subjects | Computational fluid dynamics Concrete pipes Conveying Critical fluid velocity Cylindrical shells Deformation Deformation effects Equations of motion fluid-nanoparticle mixture Galerkin method Gas pipelines higher order shear deformation theory Material properties Nanoparticles Navier-Stokes equations numerical method Offshore Offshore engineering Parameters Petroleum pipelines Pipelines Pipes Shear Shear deformation Simulation Submarine pipelines Temperature dependence Temperature gradients temperature-dependent Thermal analysis Transportation Velocity Viscosity Viscous fluids |
title | Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20for%20critical%20fluid%20velocity%20in%20temperature-dependent%20pipes%20conveying%20fluid%20mixed%20with%20nanoparticles%20using%20higher%20order%20shear%20deformation%20theory&rft.jtitle=Ships%20and%20offshore%20structures&rft.au=Heydari%20Nosrat%20Abadi,%20Mohammad&rft.date=2019-07-04&rft.volume=14&rft.issue=5&rft.spage=501&rft.epage=509&rft.pages=501-509&rft.issn=1744-5302&rft.eissn=1754-212X&rft_id=info:doi/10.1080/17445302.2018.1512357&rft_dat=%3Cproquest_cross%3E2212830001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212830001&rft_id=info:pmid/&rfr_iscdi=true |