Loading…

Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory

The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal lo...

Full description

Saved in:
Bibliographic Details
Published in:Ships and offshore structures 2019-07, Vol.14 (5), p.501-509
Main Authors: Heydari Nosrat Abadi, Mohammad, Zamani Nouri, Alireza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43
cites cdi_FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43
container_end_page 509
container_issue 5
container_start_page 501
container_title Ships and offshore structures
container_volume 14
creator Heydari Nosrat Abadi, Mohammad
Zamani Nouri, Alireza
description The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal load and the material properties are considered temperature-dependent. The well-known Navier-Stokes equation is used for obtaining the applied force of fluid to the concrete pipe. The fluid is mixed by AL 2 O 3 nanoparticles where the mixture rule is used for obtaining the effective density and viscosity. Based on higher order shear deformation theory of cylindrical shells, the displacement field of the pipe is considered. Utilising the energy method and Hamilton's principal, the motion equations are derived. The Galerkin method is applied for obtaining the critical fluid velocity of the structure. The effects of different parameters such as fluid velocity, volume per cent of nanoparticle in fluid, geometrical parameters of the pipe and temperature gradient are discussed on the critical fluid velocity of the structure. Numerical results indicate that with increasing the volume per cent of nanoparticle in fluid, the critical fluid velocity increase.
doi_str_mv 10.1080/17445302.2018.1512357
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17445302_2018_1512357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212830001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43</originalsourceid><addsrcrecordid>eNp9kc1u3SAQha2qkZqmeYRKSF37FgzEeNcq6p8UtZtWyg5hGMdENrgDTuqn6asG595uu2EQ-s45Yk5VvWX0wKii71krhOS0OTSUqQOTrOGyfVGds1aKumHN7cv9LkS9Q6-q1yndUypbpcR59ff7OgN6ayaS8uo2MkQkFn1-fhqm1TvyAFO0Pm_EB5JhXgBNXhFqBwsEByGTxS-QiI3hATYf7k662f8BRx59HkkwIS4Gi-tUwDXt0OjvRkAS0ZUzjWCQOCjxs8k-lqQRIm5vqrPBTAkuT_Oi-vX508_rr_XNjy_frj_e1JZzlethsKKzRhrXDrTrbTG6Ukp1iveOCTDSsa6VvbOigZ5dGS56cA3tjFWd5Vbwi-rd0XfB-HuFlPV9XDGUSN2UFSpOKWWFkkfKYkwJYdAL-tngphnVexf6Xxd670Kfuii6D0edD88ffIw4OZ3NNkUc0ATrk-b_t3gCBYWWcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212830001</pqid></control><display><type>article</type><title>Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory</title><source>Taylor and Francis Science and Technology Collection</source><creator>Heydari Nosrat Abadi, Mohammad ; Zamani Nouri, Alireza</creator><creatorcontrib>Heydari Nosrat Abadi, Mohammad ; Zamani Nouri, Alireza</creatorcontrib><description>The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal load and the material properties are considered temperature-dependent. The well-known Navier-Stokes equation is used for obtaining the applied force of fluid to the concrete pipe. The fluid is mixed by AL 2 O 3 nanoparticles where the mixture rule is used for obtaining the effective density and viscosity. Based on higher order shear deformation theory of cylindrical shells, the displacement field of the pipe is considered. Utilising the energy method and Hamilton's principal, the motion equations are derived. The Galerkin method is applied for obtaining the critical fluid velocity of the structure. The effects of different parameters such as fluid velocity, volume per cent of nanoparticle in fluid, geometrical parameters of the pipe and temperature gradient are discussed on the critical fluid velocity of the structure. Numerical results indicate that with increasing the volume per cent of nanoparticle in fluid, the critical fluid velocity increase.</description><identifier>ISSN: 1744-5302</identifier><identifier>EISSN: 1754-212X</identifier><identifier>DOI: 10.1080/17445302.2018.1512357</identifier><language>eng</language><publisher>Cambridge: Taylor &amp; Francis</publisher><subject>Computational fluid dynamics ; Concrete pipes ; Conveying ; Critical fluid velocity ; Cylindrical shells ; Deformation ; Deformation effects ; Equations of motion ; fluid-nanoparticle mixture ; Galerkin method ; Gas pipelines ; higher order shear deformation theory ; Material properties ; Nanoparticles ; Navier-Stokes equations ; numerical method ; Offshore ; Offshore engineering ; Parameters ; Petroleum pipelines ; Pipelines ; Pipes ; Shear ; Shear deformation ; Simulation ; Submarine pipelines ; Temperature dependence ; Temperature gradients ; temperature-dependent ; Thermal analysis ; Transportation ; Velocity ; Viscosity ; Viscous fluids</subject><ispartof>Ships and offshore structures, 2019-07, Vol.14 (5), p.501-509</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43</citedby><cites>FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Heydari Nosrat Abadi, Mohammad</creatorcontrib><creatorcontrib>Zamani Nouri, Alireza</creatorcontrib><title>Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory</title><title>Ships and offshore structures</title><description>The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal load and the material properties are considered temperature-dependent. The well-known Navier-Stokes equation is used for obtaining the applied force of fluid to the concrete pipe. The fluid is mixed by AL 2 O 3 nanoparticles where the mixture rule is used for obtaining the effective density and viscosity. Based on higher order shear deformation theory of cylindrical shells, the displacement field of the pipe is considered. Utilising the energy method and Hamilton's principal, the motion equations are derived. The Galerkin method is applied for obtaining the critical fluid velocity of the structure. The effects of different parameters such as fluid velocity, volume per cent of nanoparticle in fluid, geometrical parameters of the pipe and temperature gradient are discussed on the critical fluid velocity of the structure. Numerical results indicate that with increasing the volume per cent of nanoparticle in fluid, the critical fluid velocity increase.</description><subject>Computational fluid dynamics</subject><subject>Concrete pipes</subject><subject>Conveying</subject><subject>Critical fluid velocity</subject><subject>Cylindrical shells</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Equations of motion</subject><subject>fluid-nanoparticle mixture</subject><subject>Galerkin method</subject><subject>Gas pipelines</subject><subject>higher order shear deformation theory</subject><subject>Material properties</subject><subject>Nanoparticles</subject><subject>Navier-Stokes equations</subject><subject>numerical method</subject><subject>Offshore</subject><subject>Offshore engineering</subject><subject>Parameters</subject><subject>Petroleum pipelines</subject><subject>Pipelines</subject><subject>Pipes</subject><subject>Shear</subject><subject>Shear deformation</subject><subject>Simulation</subject><subject>Submarine pipelines</subject><subject>Temperature dependence</subject><subject>Temperature gradients</subject><subject>temperature-dependent</subject><subject>Thermal analysis</subject><subject>Transportation</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Viscous fluids</subject><issn>1744-5302</issn><issn>1754-212X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u3SAQha2qkZqmeYRKSF37FgzEeNcq6p8UtZtWyg5hGMdENrgDTuqn6asG595uu2EQ-s45Yk5VvWX0wKii71krhOS0OTSUqQOTrOGyfVGds1aKumHN7cv9LkS9Q6-q1yndUypbpcR59ff7OgN6ayaS8uo2MkQkFn1-fhqm1TvyAFO0Pm_EB5JhXgBNXhFqBwsEByGTxS-QiI3hATYf7k662f8BRx59HkkwIS4Gi-tUwDXt0OjvRkAS0ZUzjWCQOCjxs8k-lqQRIm5vqrPBTAkuT_Oi-vX508_rr_XNjy_frj_e1JZzlethsKKzRhrXDrTrbTG6Ukp1iveOCTDSsa6VvbOigZ5dGS56cA3tjFWd5Vbwi-rd0XfB-HuFlPV9XDGUSN2UFSpOKWWFkkfKYkwJYdAL-tngphnVexf6Xxd670Kfuii6D0edD88ffIw4OZ3NNkUc0ATrk-b_t3gCBYWWcw</recordid><startdate>20190704</startdate><enddate>20190704</enddate><creator>Heydari Nosrat Abadi, Mohammad</creator><creator>Zamani Nouri, Alireza</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20190704</creationdate><title>Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory</title><author>Heydari Nosrat Abadi, Mohammad ; Zamani Nouri, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Concrete pipes</topic><topic>Conveying</topic><topic>Critical fluid velocity</topic><topic>Cylindrical shells</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Equations of motion</topic><topic>fluid-nanoparticle mixture</topic><topic>Galerkin method</topic><topic>Gas pipelines</topic><topic>higher order shear deformation theory</topic><topic>Material properties</topic><topic>Nanoparticles</topic><topic>Navier-Stokes equations</topic><topic>numerical method</topic><topic>Offshore</topic><topic>Offshore engineering</topic><topic>Parameters</topic><topic>Petroleum pipelines</topic><topic>Pipelines</topic><topic>Pipes</topic><topic>Shear</topic><topic>Shear deformation</topic><topic>Simulation</topic><topic>Submarine pipelines</topic><topic>Temperature dependence</topic><topic>Temperature gradients</topic><topic>temperature-dependent</topic><topic>Thermal analysis</topic><topic>Transportation</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heydari Nosrat Abadi, Mohammad</creatorcontrib><creatorcontrib>Zamani Nouri, Alireza</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ships and offshore structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heydari Nosrat Abadi, Mohammad</au><au>Zamani Nouri, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory</atitle><jtitle>Ships and offshore structures</jtitle><date>2019-07-04</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><spage>501</spage><epage>509</epage><pages>501-509</pages><issn>1744-5302</issn><eissn>1754-212X</eissn><abstract>The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal load and the material properties are considered temperature-dependent. The well-known Navier-Stokes equation is used for obtaining the applied force of fluid to the concrete pipe. The fluid is mixed by AL 2 O 3 nanoparticles where the mixture rule is used for obtaining the effective density and viscosity. Based on higher order shear deformation theory of cylindrical shells, the displacement field of the pipe is considered. Utilising the energy method and Hamilton's principal, the motion equations are derived. The Galerkin method is applied for obtaining the critical fluid velocity of the structure. The effects of different parameters such as fluid velocity, volume per cent of nanoparticle in fluid, geometrical parameters of the pipe and temperature gradient are discussed on the critical fluid velocity of the structure. Numerical results indicate that with increasing the volume per cent of nanoparticle in fluid, the critical fluid velocity increase.</abstract><cop>Cambridge</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17445302.2018.1512357</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-5302
ispartof Ships and offshore structures, 2019-07, Vol.14 (5), p.501-509
issn 1744-5302
1754-212X
language eng
recordid cdi_crossref_primary_10_1080_17445302_2018_1512357
source Taylor and Francis Science and Technology Collection
subjects Computational fluid dynamics
Concrete pipes
Conveying
Critical fluid velocity
Cylindrical shells
Deformation
Deformation effects
Equations of motion
fluid-nanoparticle mixture
Galerkin method
Gas pipelines
higher order shear deformation theory
Material properties
Nanoparticles
Navier-Stokes equations
numerical method
Offshore
Offshore engineering
Parameters
Petroleum pipelines
Pipelines
Pipes
Shear
Shear deformation
Simulation
Submarine pipelines
Temperature dependence
Temperature gradients
temperature-dependent
Thermal analysis
Transportation
Velocity
Viscosity
Viscous fluids
title Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20for%20critical%20fluid%20velocity%20in%20temperature-dependent%20pipes%20conveying%20fluid%20mixed%20with%20nanoparticles%20using%20higher%20order%20shear%20deformation%20theory&rft.jtitle=Ships%20and%20offshore%20structures&rft.au=Heydari%20Nosrat%20Abadi,%20Mohammad&rft.date=2019-07-04&rft.volume=14&rft.issue=5&rft.spage=501&rft.epage=509&rft.pages=501-509&rft.issn=1744-5302&rft.eissn=1754-212X&rft_id=info:doi/10.1080/17445302.2018.1512357&rft_dat=%3Cproquest_cross%3E2212830001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-ffc49ca5ad7f09bcdef6888983bd14ea5d1975bdc42eb16a34bed209ac89c3c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212830001&rft_id=info:pmid/&rfr_iscdi=true