Loading…

Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures

This paper presents a novel multiscale explicit topology optimisation approach for concurrently optimizing the structure at the macro level and the bio-mimicking porous infillings at the micro level. Solid bar components with cross-section control at the macro level and sphere components at the micr...

Full description

Saved in:
Bibliographic Details
Published in:Virtual and physical prototyping 2023-12, Vol.18 (1)
Main Authors: Lan, Tian, Do, Truong, Al-Ketan, Oraib, Fox, Kate, Tran, Phuong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243
cites cdi_FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243
container_end_page
container_issue 1
container_start_page
container_title Virtual and physical prototyping
container_volume 18
creator Lan, Tian
Do, Truong
Al-Ketan, Oraib
Fox, Kate
Tran, Phuong
description This paper presents a novel multiscale explicit topology optimisation approach for concurrently optimizing the structure at the macro level and the bio-mimicking porous infillings at the micro level. Solid bar components with cross-section control at the macro level and sphere components at the micro level are constructed as the minimal control units to replace the manipulation of material distribution at each grid. The overlapping, moving and morphing of bar components provide the ability to generate flexible structural shapes at the macro level. Using the inspiration of the turtle shell (carapace), the sphere components are designed to move, overlap, and resize inside the bar to sufficiently mimic both the regular and irregular porous features. Classical beam designs, lattice structure designs and unit cell designs are illustrated as numerical examples to demonstrate the functionalities and correctness of the proposed method. As a result, the stochastic pores distribution and porosity control can be validated. The abilities of optimising lattice structure at truss-level and single unit cell level are demonstrated. Moreover, the samples are fabricated by selective laser melting (SLM) technology and then scanned with the X-ray micro-computed tomography (micro-CT) technique to further examine the manufacturability.
doi_str_mv 10.1080/17452759.2022.2150867
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17452759_2022_2150867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_91a694e9964245c49cbba7bee522ca52</doaj_id><sourcerecordid>oai_doaj_org_article_91a694e9964245c49cbba7bee522ca52</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243</originalsourceid><addsrcrecordid>eNp9kctO3DAUhiPUSlDaR6jkF8jg-BLHO6oRhZGQuoG1dXwbGRJ7ZDuFefsmDLDs6hz99v-dxdc0Pzu86fCArzrBOBFcbggmZEM6jodenDUXa94S0YsvnzuX5823Up4wZhTT7qJ53aZo5pxdrGiaxxqKgdGhmg5pTPsjSocaplCghhSX9AWyLci6EvYRQbQIrA01_HVogjh7MHXOIe5R8kiH1E5L1zyvwSHlNBdUap7XP658b756GIv78T4vm8ffNw_bu_b-z-1u--u-NYzQ2kpgA4ZBSG8kcwJbIgkGbkjHQFs6UO6dIFpIbaXQFAvmPRVWsJ7q5YHRy2Z34toET-qQwwT5qBIE9RakvFeQazCjU7KDfjkiZc8I44ZJozUI7RwnxAAnC4ufWCanUrLzn7wOq1WF-lChVhXqXcXSuz71QvQpT_CS8mhVheOYss8QTSiK_h_xDxCFk7U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures</title><source>Taylor and Francis Science and Technology Collection</source><creator>Lan, Tian ; Do, Truong ; Al-Ketan, Oraib ; Fox, Kate ; Tran, Phuong</creator><creatorcontrib>Lan, Tian ; Do, Truong ; Al-Ketan, Oraib ; Fox, Kate ; Tran, Phuong</creatorcontrib><description>This paper presents a novel multiscale explicit topology optimisation approach for concurrently optimizing the structure at the macro level and the bio-mimicking porous infillings at the micro level. Solid bar components with cross-section control at the macro level and sphere components at the micro level are constructed as the minimal control units to replace the manipulation of material distribution at each grid. The overlapping, moving and morphing of bar components provide the ability to generate flexible structural shapes at the macro level. Using the inspiration of the turtle shell (carapace), the sphere components are designed to move, overlap, and resize inside the bar to sufficiently mimic both the regular and irregular porous features. Classical beam designs, lattice structure designs and unit cell designs are illustrated as numerical examples to demonstrate the functionalities and correctness of the proposed method. As a result, the stochastic pores distribution and porosity control can be validated. The abilities of optimising lattice structure at truss-level and single unit cell level are demonstrated. Moreover, the samples are fabricated by selective laser melting (SLM) technology and then scanned with the X-ray micro-computed tomography (micro-CT) technique to further examine the manufacturability.</description><identifier>ISSN: 1745-2759</identifier><identifier>EISSN: 1745-2767</identifier><identifier>DOI: 10.1080/17452759.2022.2150867</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>additive manufacturing ; bio-mimicking ; Concurrent multiscale topology optimisation ; moving morphable components ; porous infillings</subject><ispartof>Virtual and physical prototyping, 2023-12, Vol.18 (1)</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243</citedby><cites>FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243</cites><orcidid>0000-0003-1873-9789 ; 0000-0003-1747-5195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lan, Tian</creatorcontrib><creatorcontrib>Do, Truong</creatorcontrib><creatorcontrib>Al-Ketan, Oraib</creatorcontrib><creatorcontrib>Fox, Kate</creatorcontrib><creatorcontrib>Tran, Phuong</creatorcontrib><title>Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures</title><title>Virtual and physical prototyping</title><description>This paper presents a novel multiscale explicit topology optimisation approach for concurrently optimizing the structure at the macro level and the bio-mimicking porous infillings at the micro level. Solid bar components with cross-section control at the macro level and sphere components at the micro level are constructed as the minimal control units to replace the manipulation of material distribution at each grid. The overlapping, moving and morphing of bar components provide the ability to generate flexible structural shapes at the macro level. Using the inspiration of the turtle shell (carapace), the sphere components are designed to move, overlap, and resize inside the bar to sufficiently mimic both the regular and irregular porous features. Classical beam designs, lattice structure designs and unit cell designs are illustrated as numerical examples to demonstrate the functionalities and correctness of the proposed method. As a result, the stochastic pores distribution and porosity control can be validated. The abilities of optimising lattice structure at truss-level and single unit cell level are demonstrated. Moreover, the samples are fabricated by selective laser melting (SLM) technology and then scanned with the X-ray micro-computed tomography (micro-CT) technique to further examine the manufacturability.</description><subject>additive manufacturing</subject><subject>bio-mimicking</subject><subject>Concurrent multiscale topology optimisation</subject><subject>moving morphable components</subject><subject>porous infillings</subject><issn>1745-2759</issn><issn>1745-2767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctO3DAUhiPUSlDaR6jkF8jg-BLHO6oRhZGQuoG1dXwbGRJ7ZDuFefsmDLDs6hz99v-dxdc0Pzu86fCArzrBOBFcbggmZEM6jodenDUXa94S0YsvnzuX5823Up4wZhTT7qJ53aZo5pxdrGiaxxqKgdGhmg5pTPsjSocaplCghhSX9AWyLci6EvYRQbQIrA01_HVogjh7MHXOIe5R8kiH1E5L1zyvwSHlNBdUap7XP658b756GIv78T4vm8ffNw_bu_b-z-1u--u-NYzQ2kpgA4ZBSG8kcwJbIgkGbkjHQFs6UO6dIFpIbaXQFAvmPRVWsJ7q5YHRy2Z34toET-qQwwT5qBIE9RakvFeQazCjU7KDfjkiZc8I44ZJozUI7RwnxAAnC4ufWCanUrLzn7wOq1WF-lChVhXqXcXSuz71QvQpT_CS8mhVheOYss8QTSiK_h_xDxCFk7U</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Lan, Tian</creator><creator>Do, Truong</creator><creator>Al-Ketan, Oraib</creator><creator>Fox, Kate</creator><creator>Tran, Phuong</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1873-9789</orcidid><orcidid>https://orcid.org/0000-0003-1747-5195</orcidid></search><sort><creationdate>20231231</creationdate><title>Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures</title><author>Lan, Tian ; Do, Truong ; Al-Ketan, Oraib ; Fox, Kate ; Tran, Phuong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>additive manufacturing</topic><topic>bio-mimicking</topic><topic>Concurrent multiscale topology optimisation</topic><topic>moving morphable components</topic><topic>porous infillings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Tian</creatorcontrib><creatorcontrib>Do, Truong</creatorcontrib><creatorcontrib>Al-Ketan, Oraib</creatorcontrib><creatorcontrib>Fox, Kate</creatorcontrib><creatorcontrib>Tran, Phuong</creatorcontrib><collection>Taylor &amp; Francis Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Virtual and physical prototyping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Tian</au><au>Do, Truong</au><au>Al-Ketan, Oraib</au><au>Fox, Kate</au><au>Tran, Phuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures</atitle><jtitle>Virtual and physical prototyping</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>18</volume><issue>1</issue><issn>1745-2759</issn><eissn>1745-2767</eissn><abstract>This paper presents a novel multiscale explicit topology optimisation approach for concurrently optimizing the structure at the macro level and the bio-mimicking porous infillings at the micro level. Solid bar components with cross-section control at the macro level and sphere components at the micro level are constructed as the minimal control units to replace the manipulation of material distribution at each grid. The overlapping, moving and morphing of bar components provide the ability to generate flexible structural shapes at the macro level. Using the inspiration of the turtle shell (carapace), the sphere components are designed to move, overlap, and resize inside the bar to sufficiently mimic both the regular and irregular porous features. Classical beam designs, lattice structure designs and unit cell designs are illustrated as numerical examples to demonstrate the functionalities and correctness of the proposed method. As a result, the stochastic pores distribution and porosity control can be validated. The abilities of optimising lattice structure at truss-level and single unit cell level are demonstrated. Moreover, the samples are fabricated by selective laser melting (SLM) technology and then scanned with the X-ray micro-computed tomography (micro-CT) technique to further examine the manufacturability.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/17452759.2022.2150867</doi><orcidid>https://orcid.org/0000-0003-1873-9789</orcidid><orcidid>https://orcid.org/0000-0003-1747-5195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2759
ispartof Virtual and physical prototyping, 2023-12, Vol.18 (1)
issn 1745-2759
1745-2767
language eng
recordid cdi_crossref_primary_10_1080_17452759_2022_2150867
source Taylor and Francis Science and Technology Collection
subjects additive manufacturing
bio-mimicking
Concurrent multiscale topology optimisation
moving morphable components
porous infillings
title Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrent%20multiscale%20topology%20optimisation%20towards%20design%20and%20additive%20manufacturing%20of%20bio-mimicking%20porous%20structures&rft.jtitle=Virtual%20and%20physical%20prototyping&rft.au=Lan,%20Tian&rft.date=2023-12-31&rft.volume=18&rft.issue=1&rft.issn=1745-2759&rft.eissn=1745-2767&rft_id=info:doi/10.1080/17452759.2022.2150867&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_91a694e9964245c49cbba7bee522ca52%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true