Loading…
Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures
This paper presents a novel multiscale explicit topology optimisation approach for concurrently optimizing the structure at the macro level and the bio-mimicking porous infillings at the micro level. Solid bar components with cross-section control at the macro level and sphere components at the micr...
Saved in:
Published in: | Virtual and physical prototyping 2023-12, Vol.18 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Virtual and physical prototyping |
container_volume | 18 |
creator | Lan, Tian Do, Truong Al-Ketan, Oraib Fox, Kate Tran, Phuong |
description | This paper presents a novel multiscale explicit topology optimisation approach for concurrently optimizing the structure at the macro level and the bio-mimicking porous infillings at the micro level. Solid bar components with cross-section control at the macro level and sphere components at the micro level are constructed as the minimal control units to replace the manipulation of material distribution at each grid. The overlapping, moving and morphing of bar components provide the ability to generate flexible structural shapes at the macro level. Using the inspiration of the turtle shell (carapace), the sphere components are designed to move, overlap, and resize inside the bar to sufficiently mimic both the regular and irregular porous features. Classical beam designs, lattice structure designs and unit cell designs are illustrated as numerical examples to demonstrate the functionalities and correctness of the proposed method. As a result, the stochastic pores distribution and porosity control can be validated. The abilities of optimising lattice structure at truss-level and single unit cell level are demonstrated. Moreover, the samples are fabricated by selective laser melting (SLM) technology and then scanned with the X-ray micro-computed tomography (micro-CT) technique to further examine the manufacturability. |
doi_str_mv | 10.1080/17452759.2022.2150867 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17452759_2022_2150867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_91a694e9964245c49cbba7bee522ca52</doaj_id><sourcerecordid>oai_doaj_org_article_91a694e9964245c49cbba7bee522ca52</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243</originalsourceid><addsrcrecordid>eNp9kctO3DAUhiPUSlDaR6jkF8jg-BLHO6oRhZGQuoG1dXwbGRJ7ZDuFefsmDLDs6hz99v-dxdc0Pzu86fCArzrBOBFcbggmZEM6jodenDUXa94S0YsvnzuX5823Up4wZhTT7qJ53aZo5pxdrGiaxxqKgdGhmg5pTPsjSocaplCghhSX9AWyLci6EvYRQbQIrA01_HVogjh7MHXOIe5R8kiH1E5L1zyvwSHlNBdUap7XP658b756GIv78T4vm8ffNw_bu_b-z-1u--u-NYzQ2kpgA4ZBSG8kcwJbIgkGbkjHQFs6UO6dIFpIbaXQFAvmPRVWsJ7q5YHRy2Z34toET-qQwwT5qBIE9RakvFeQazCjU7KDfjkiZc8I44ZJozUI7RwnxAAnC4ufWCanUrLzn7wOq1WF-lChVhXqXcXSuz71QvQpT_CS8mhVheOYss8QTSiK_h_xDxCFk7U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures</title><source>Taylor and Francis Science and Technology Collection</source><creator>Lan, Tian ; Do, Truong ; Al-Ketan, Oraib ; Fox, Kate ; Tran, Phuong</creator><creatorcontrib>Lan, Tian ; Do, Truong ; Al-Ketan, Oraib ; Fox, Kate ; Tran, Phuong</creatorcontrib><description>This paper presents a novel multiscale explicit topology optimisation approach for concurrently optimizing the structure at the macro level and the bio-mimicking porous infillings at the micro level. Solid bar components with cross-section control at the macro level and sphere components at the micro level are constructed as the minimal control units to replace the manipulation of material distribution at each grid. The overlapping, moving and morphing of bar components provide the ability to generate flexible structural shapes at the macro level. Using the inspiration of the turtle shell (carapace), the sphere components are designed to move, overlap, and resize inside the bar to sufficiently mimic both the regular and irregular porous features. Classical beam designs, lattice structure designs and unit cell designs are illustrated as numerical examples to demonstrate the functionalities and correctness of the proposed method. As a result, the stochastic pores distribution and porosity control can be validated. The abilities of optimising lattice structure at truss-level and single unit cell level are demonstrated. Moreover, the samples are fabricated by selective laser melting (SLM) technology and then scanned with the X-ray micro-computed tomography (micro-CT) technique to further examine the manufacturability.</description><identifier>ISSN: 1745-2759</identifier><identifier>EISSN: 1745-2767</identifier><identifier>DOI: 10.1080/17452759.2022.2150867</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>additive manufacturing ; bio-mimicking ; Concurrent multiscale topology optimisation ; moving morphable components ; porous infillings</subject><ispartof>Virtual and physical prototyping, 2023-12, Vol.18 (1)</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243</citedby><cites>FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243</cites><orcidid>0000-0003-1873-9789 ; 0000-0003-1747-5195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lan, Tian</creatorcontrib><creatorcontrib>Do, Truong</creatorcontrib><creatorcontrib>Al-Ketan, Oraib</creatorcontrib><creatorcontrib>Fox, Kate</creatorcontrib><creatorcontrib>Tran, Phuong</creatorcontrib><title>Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures</title><title>Virtual and physical prototyping</title><description>This paper presents a novel multiscale explicit topology optimisation approach for concurrently optimizing the structure at the macro level and the bio-mimicking porous infillings at the micro level. Solid bar components with cross-section control at the macro level and sphere components at the micro level are constructed as the minimal control units to replace the manipulation of material distribution at each grid. The overlapping, moving and morphing of bar components provide the ability to generate flexible structural shapes at the macro level. Using the inspiration of the turtle shell (carapace), the sphere components are designed to move, overlap, and resize inside the bar to sufficiently mimic both the regular and irregular porous features. Classical beam designs, lattice structure designs and unit cell designs are illustrated as numerical examples to demonstrate the functionalities and correctness of the proposed method. As a result, the stochastic pores distribution and porosity control can be validated. The abilities of optimising lattice structure at truss-level and single unit cell level are demonstrated. Moreover, the samples are fabricated by selective laser melting (SLM) technology and then scanned with the X-ray micro-computed tomography (micro-CT) technique to further examine the manufacturability.</description><subject>additive manufacturing</subject><subject>bio-mimicking</subject><subject>Concurrent multiscale topology optimisation</subject><subject>moving morphable components</subject><subject>porous infillings</subject><issn>1745-2759</issn><issn>1745-2767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctO3DAUhiPUSlDaR6jkF8jg-BLHO6oRhZGQuoG1dXwbGRJ7ZDuFefsmDLDs6hz99v-dxdc0Pzu86fCArzrBOBFcbggmZEM6jodenDUXa94S0YsvnzuX5823Up4wZhTT7qJ53aZo5pxdrGiaxxqKgdGhmg5pTPsjSocaplCghhSX9AWyLci6EvYRQbQIrA01_HVogjh7MHXOIe5R8kiH1E5L1zyvwSHlNBdUap7XP658b756GIv78T4vm8ffNw_bu_b-z-1u--u-NYzQ2kpgA4ZBSG8kcwJbIgkGbkjHQFs6UO6dIFpIbaXQFAvmPRVWsJ7q5YHRy2Z34toET-qQwwT5qBIE9RakvFeQazCjU7KDfjkiZc8I44ZJozUI7RwnxAAnC4ufWCanUrLzn7wOq1WF-lChVhXqXcXSuz71QvQpT_CS8mhVheOYss8QTSiK_h_xDxCFk7U</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Lan, Tian</creator><creator>Do, Truong</creator><creator>Al-Ketan, Oraib</creator><creator>Fox, Kate</creator><creator>Tran, Phuong</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1873-9789</orcidid><orcidid>https://orcid.org/0000-0003-1747-5195</orcidid></search><sort><creationdate>20231231</creationdate><title>Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures</title><author>Lan, Tian ; Do, Truong ; Al-Ketan, Oraib ; Fox, Kate ; Tran, Phuong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>additive manufacturing</topic><topic>bio-mimicking</topic><topic>Concurrent multiscale topology optimisation</topic><topic>moving morphable components</topic><topic>porous infillings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Tian</creatorcontrib><creatorcontrib>Do, Truong</creatorcontrib><creatorcontrib>Al-Ketan, Oraib</creatorcontrib><creatorcontrib>Fox, Kate</creatorcontrib><creatorcontrib>Tran, Phuong</creatorcontrib><collection>Taylor & Francis Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Virtual and physical prototyping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Tian</au><au>Do, Truong</au><au>Al-Ketan, Oraib</au><au>Fox, Kate</au><au>Tran, Phuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures</atitle><jtitle>Virtual and physical prototyping</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>18</volume><issue>1</issue><issn>1745-2759</issn><eissn>1745-2767</eissn><abstract>This paper presents a novel multiscale explicit topology optimisation approach for concurrently optimizing the structure at the macro level and the bio-mimicking porous infillings at the micro level. Solid bar components with cross-section control at the macro level and sphere components at the micro level are constructed as the minimal control units to replace the manipulation of material distribution at each grid. The overlapping, moving and morphing of bar components provide the ability to generate flexible structural shapes at the macro level. Using the inspiration of the turtle shell (carapace), the sphere components are designed to move, overlap, and resize inside the bar to sufficiently mimic both the regular and irregular porous features. Classical beam designs, lattice structure designs and unit cell designs are illustrated as numerical examples to demonstrate the functionalities and correctness of the proposed method. As a result, the stochastic pores distribution and porosity control can be validated. The abilities of optimising lattice structure at truss-level and single unit cell level are demonstrated. Moreover, the samples are fabricated by selective laser melting (SLM) technology and then scanned with the X-ray micro-computed tomography (micro-CT) technique to further examine the manufacturability.</abstract><pub>Taylor & Francis</pub><doi>10.1080/17452759.2022.2150867</doi><orcidid>https://orcid.org/0000-0003-1873-9789</orcidid><orcidid>https://orcid.org/0000-0003-1747-5195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2759 |
ispartof | Virtual and physical prototyping, 2023-12, Vol.18 (1) |
issn | 1745-2759 1745-2767 |
language | eng |
recordid | cdi_crossref_primary_10_1080_17452759_2022_2150867 |
source | Taylor and Francis Science and Technology Collection |
subjects | additive manufacturing bio-mimicking Concurrent multiscale topology optimisation moving morphable components porous infillings |
title | Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrent%20multiscale%20topology%20optimisation%20towards%20design%20and%20additive%20manufacturing%20of%20bio-mimicking%20porous%20structures&rft.jtitle=Virtual%20and%20physical%20prototyping&rft.au=Lan,%20Tian&rft.date=2023-12-31&rft.volume=18&rft.issue=1&rft.issn=1745-2759&rft.eissn=1745-2767&rft_id=info:doi/10.1080/17452759.2022.2150867&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_91a694e9964245c49cbba7bee522ca52%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-9a480a879fc94e70d2920a5c214abd3835fe72b79bd97b3074ff37d7463be7243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |