Loading…

Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory

This paper deals with the free and forced, linear and nonlinear vibration of functionally graded (along with thickness) nanotube, considering the non-uniform cross-section that made a two-dimensional functionally graded (2D-FG) structure. The bi-dimensional nanostructure-dependent governing equation...

Full description

Saved in:
Bibliographic Details
Published in:Waves in random and complex media 2024-07, Vol.34 (4), p.2366-2393
Main Authors: Zhang, Fusheng, Lu, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13
cites cdi_FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13
container_end_page 2393
container_issue 4
container_start_page 2366
container_title Waves in random and complex media
container_volume 34
creator Zhang, Fusheng
Lu, Wei
description This paper deals with the free and forced, linear and nonlinear vibration of functionally graded (along with thickness) nanotube, considering the non-uniform cross-section that made a two-dimensional functionally graded (2D-FG) structure. The bi-dimensional nanostructure-dependent governing equation is modeled based on the classic beam theory (Euler-Bernoulli), and they are derived by Hamilton's principle based on nonlocal gradient strain theory considering the von-Kármán nonlinear strain and the external harmonic load. To solve the general equations and calculate the results, the generalized differential quadrature method (GDQM) was used coupled with the numerical iteration method for the nonlinear response. The results are discussed for the different simply-supported and clamped boundary conditions. The 2D-FG nanotube's behavior is analyzed for different nonlinear amplitudes, nonlocal strain gradient parameters and nonlocal parameters, different rates of cross-sections, and different material distributions.
doi_str_mv 10.1080/17455030.2021.1956016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17455030_2021_1956016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083338591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13</originalsourceid><addsrcrecordid>eNp9UNtKxDAULKKgrn6CEPC560nadNs3ZfEGi77oc0hz0UhN9CRV9if8ZlN39VEIZDJnZg6ZojihMKfQwhld1JxDBXMGjM5pxxugzU5xMPElh7rb_cMV7BeHMb4A1NBQdlB83QVfDs4bicSiMUR6TWxAZTT5cD3K5IInwZLeldqhUdNbDsSOfguHNXlCqbM-YSZlykgF71RWpbE3pJcxUzklPRvigx_CNJo8zvhEYkLpfoYB10fFnpVDNMfbe1Y8Xl0-LG_K1f317fJiVaqqalPJlKprw2QlAWyreMssgx4a2-l-oRSvm4WWHDrLGdjeGAOdbtuOatbnY2k1K043uW8Y3kcTk3gJI-bfRFFBW-UlvJtUfKNSGGJEY8UbuleJa0FBTNWL3-rFVL3YVp995xuf87nKV_kZcNAiyfUQ0KL0yuU1_0d8A-Tajdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083338591</pqid></control><display><type>article</type><title>Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zhang, Fusheng ; Lu, Wei</creator><creatorcontrib>Zhang, Fusheng ; Lu, Wei</creatorcontrib><description>This paper deals with the free and forced, linear and nonlinear vibration of functionally graded (along with thickness) nanotube, considering the non-uniform cross-section that made a two-dimensional functionally graded (2D-FG) structure. The bi-dimensional nanostructure-dependent governing equation is modeled based on the classic beam theory (Euler-Bernoulli), and they are derived by Hamilton's principle based on nonlocal gradient strain theory considering the von-Kármán nonlinear strain and the external harmonic load. To solve the general equations and calculate the results, the generalized differential quadrature method (GDQM) was used coupled with the numerical iteration method for the nonlinear response. The results are discussed for the different simply-supported and clamped boundary conditions. The 2D-FG nanotube's behavior is analyzed for different nonlinear amplitudes, nonlocal strain gradient parameters and nonlocal parameters, different rates of cross-sections, and different material distributions.</description><identifier>ISSN: 1745-5030</identifier><identifier>EISSN: 1745-5049</identifier><identifier>DOI: 10.1080/17455030.2021.1956016</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Beam theory (structures) ; bi-directional FG ; Boundary conditions ; Cross-sections ; Differential equations ; Forced vibration ; functionally graded tube ; Functionally gradient materials ; Generalized differential quadrature method ; Hamilton's principle ; Iterative methods ; Nanotubes ; non-uniform tube ; Nonlinear response ; Nonlinear vibration ; nonlocal gradient strain theory ; Parameters ; Quadratures ; Strain analysis ; Thickness ; truncated conical tube ; Two dimensional analysis</subject><ispartof>Waves in random and complex media, 2024-07, Vol.34 (4), p.2366-2393</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13</citedby><cites>FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13</cites><orcidid>0000-0001-8138-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Fusheng</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><title>Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory</title><title>Waves in random and complex media</title><description>This paper deals with the free and forced, linear and nonlinear vibration of functionally graded (along with thickness) nanotube, considering the non-uniform cross-section that made a two-dimensional functionally graded (2D-FG) structure. The bi-dimensional nanostructure-dependent governing equation is modeled based on the classic beam theory (Euler-Bernoulli), and they are derived by Hamilton's principle based on nonlocal gradient strain theory considering the von-Kármán nonlinear strain and the external harmonic load. To solve the general equations and calculate the results, the generalized differential quadrature method (GDQM) was used coupled with the numerical iteration method for the nonlinear response. The results are discussed for the different simply-supported and clamped boundary conditions. The 2D-FG nanotube's behavior is analyzed for different nonlinear amplitudes, nonlocal strain gradient parameters and nonlocal parameters, different rates of cross-sections, and different material distributions.</description><subject>Beam theory (structures)</subject><subject>bi-directional FG</subject><subject>Boundary conditions</subject><subject>Cross-sections</subject><subject>Differential equations</subject><subject>Forced vibration</subject><subject>functionally graded tube</subject><subject>Functionally gradient materials</subject><subject>Generalized differential quadrature method</subject><subject>Hamilton's principle</subject><subject>Iterative methods</subject><subject>Nanotubes</subject><subject>non-uniform tube</subject><subject>Nonlinear response</subject><subject>Nonlinear vibration</subject><subject>nonlocal gradient strain theory</subject><subject>Parameters</subject><subject>Quadratures</subject><subject>Strain analysis</subject><subject>Thickness</subject><subject>truncated conical tube</subject><subject>Two dimensional analysis</subject><issn>1745-5030</issn><issn>1745-5049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKxDAULKKgrn6CEPC560nadNs3ZfEGi77oc0hz0UhN9CRV9if8ZlN39VEIZDJnZg6ZojihMKfQwhld1JxDBXMGjM5pxxugzU5xMPElh7rb_cMV7BeHMb4A1NBQdlB83QVfDs4bicSiMUR6TWxAZTT5cD3K5IInwZLeldqhUdNbDsSOfguHNXlCqbM-YSZlykgF71RWpbE3pJcxUzklPRvigx_CNJo8zvhEYkLpfoYB10fFnpVDNMfbe1Y8Xl0-LG_K1f317fJiVaqqalPJlKprw2QlAWyreMssgx4a2-l-oRSvm4WWHDrLGdjeGAOdbtuOatbnY2k1K043uW8Y3kcTk3gJI-bfRFFBW-UlvJtUfKNSGGJEY8UbuleJa0FBTNWL3-rFVL3YVp995xuf87nKV_kZcNAiyfUQ0KL0yuU1_0d8A-Tajdg</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Zhang, Fusheng</creator><creator>Lu, Wei</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8138-6862</orcidid></search><sort><creationdate>20240703</creationdate><title>Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory</title><author>Zhang, Fusheng ; Lu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Beam theory (structures)</topic><topic>bi-directional FG</topic><topic>Boundary conditions</topic><topic>Cross-sections</topic><topic>Differential equations</topic><topic>Forced vibration</topic><topic>functionally graded tube</topic><topic>Functionally gradient materials</topic><topic>Generalized differential quadrature method</topic><topic>Hamilton's principle</topic><topic>Iterative methods</topic><topic>Nanotubes</topic><topic>non-uniform tube</topic><topic>Nonlinear response</topic><topic>Nonlinear vibration</topic><topic>nonlocal gradient strain theory</topic><topic>Parameters</topic><topic>Quadratures</topic><topic>Strain analysis</topic><topic>Thickness</topic><topic>truncated conical tube</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fusheng</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Waves in random and complex media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fusheng</au><au>Lu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory</atitle><jtitle>Waves in random and complex media</jtitle><date>2024-07-03</date><risdate>2024</risdate><volume>34</volume><issue>4</issue><spage>2366</spage><epage>2393</epage><pages>2366-2393</pages><issn>1745-5030</issn><eissn>1745-5049</eissn><abstract>This paper deals with the free and forced, linear and nonlinear vibration of functionally graded (along with thickness) nanotube, considering the non-uniform cross-section that made a two-dimensional functionally graded (2D-FG) structure. The bi-dimensional nanostructure-dependent governing equation is modeled based on the classic beam theory (Euler-Bernoulli), and they are derived by Hamilton's principle based on nonlocal gradient strain theory considering the von-Kármán nonlinear strain and the external harmonic load. To solve the general equations and calculate the results, the generalized differential quadrature method (GDQM) was used coupled with the numerical iteration method for the nonlinear response. The results are discussed for the different simply-supported and clamped boundary conditions. The 2D-FG nanotube's behavior is analyzed for different nonlinear amplitudes, nonlocal strain gradient parameters and nonlocal parameters, different rates of cross-sections, and different material distributions.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17455030.2021.1956016</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8138-6862</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-5030
ispartof Waves in random and complex media, 2024-07, Vol.34 (4), p.2366-2393
issn 1745-5030
1745-5049
language eng
recordid cdi_crossref_primary_10_1080_17455030_2021_1956016
source Taylor and Francis Science and Technology Collection
subjects Beam theory (structures)
bi-directional FG
Boundary conditions
Cross-sections
Differential equations
Forced vibration
functionally graded tube
Functionally gradient materials
Generalized differential quadrature method
Hamilton's principle
Iterative methods
Nanotubes
non-uniform tube
Nonlinear response
Nonlinear vibration
nonlocal gradient strain theory
Parameters
Quadratures
Strain analysis
Thickness
truncated conical tube
Two dimensional analysis
title Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20free%20and%20forced%20vibration%20of%20bi-directional%20functionally%20graded%20truncated%20conical%20tube%20based%20on%20the%20nonlocal%20gradient%20strain%20theory&rft.jtitle=Waves%20in%20random%20and%20complex%20media&rft.au=Zhang,%20Fusheng&rft.date=2024-07-03&rft.volume=34&rft.issue=4&rft.spage=2366&rft.epage=2393&rft.pages=2366-2393&rft.issn=1745-5030&rft.eissn=1745-5049&rft_id=info:doi/10.1080/17455030.2021.1956016&rft_dat=%3Cproquest_cross%3E3083338591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3083338591&rft_id=info:pmid/&rfr_iscdi=true