Loading…
Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory
This paper deals with the free and forced, linear and nonlinear vibration of functionally graded (along with thickness) nanotube, considering the non-uniform cross-section that made a two-dimensional functionally graded (2D-FG) structure. The bi-dimensional nanostructure-dependent governing equation...
Saved in:
Published in: | Waves in random and complex media 2024-07, Vol.34 (4), p.2366-2393 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13 |
container_end_page | 2393 |
container_issue | 4 |
container_start_page | 2366 |
container_title | Waves in random and complex media |
container_volume | 34 |
creator | Zhang, Fusheng Lu, Wei |
description | This paper deals with the free and forced, linear and nonlinear vibration of functionally graded (along with thickness) nanotube, considering the non-uniform cross-section that made a two-dimensional functionally graded (2D-FG) structure. The bi-dimensional nanostructure-dependent governing equation is modeled based on the classic beam theory (Euler-Bernoulli), and they are derived by Hamilton's principle based on nonlocal gradient strain theory considering the von-Kármán nonlinear strain and the external harmonic load. To solve the general equations and calculate the results, the generalized differential quadrature method (GDQM) was used coupled with the numerical iteration method for the nonlinear response. The results are discussed for the different simply-supported and clamped boundary conditions. The 2D-FG nanotube's behavior is analyzed for different nonlinear amplitudes, nonlocal strain gradient parameters and nonlocal parameters, different rates of cross-sections, and different material distributions. |
doi_str_mv | 10.1080/17455030.2021.1956016 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17455030_2021_1956016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083338591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13</originalsourceid><addsrcrecordid>eNp9UNtKxDAULKKgrn6CEPC560nadNs3ZfEGi77oc0hz0UhN9CRV9if8ZlN39VEIZDJnZg6ZojihMKfQwhld1JxDBXMGjM5pxxugzU5xMPElh7rb_cMV7BeHMb4A1NBQdlB83QVfDs4bicSiMUR6TWxAZTT5cD3K5IInwZLeldqhUdNbDsSOfguHNXlCqbM-YSZlykgF71RWpbE3pJcxUzklPRvigx_CNJo8zvhEYkLpfoYB10fFnpVDNMfbe1Y8Xl0-LG_K1f317fJiVaqqalPJlKprw2QlAWyreMssgx4a2-l-oRSvm4WWHDrLGdjeGAOdbtuOatbnY2k1K043uW8Y3kcTk3gJI-bfRFFBW-UlvJtUfKNSGGJEY8UbuleJa0FBTNWL3-rFVL3YVp995xuf87nKV_kZcNAiyfUQ0KL0yuU1_0d8A-Tajdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083338591</pqid></control><display><type>article</type><title>Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zhang, Fusheng ; Lu, Wei</creator><creatorcontrib>Zhang, Fusheng ; Lu, Wei</creatorcontrib><description>This paper deals with the free and forced, linear and nonlinear vibration of functionally graded (along with thickness) nanotube, considering the non-uniform cross-section that made a two-dimensional functionally graded (2D-FG) structure. The bi-dimensional nanostructure-dependent governing equation is modeled based on the classic beam theory (Euler-Bernoulli), and they are derived by Hamilton's principle based on nonlocal gradient strain theory considering the von-Kármán nonlinear strain and the external harmonic load. To solve the general equations and calculate the results, the generalized differential quadrature method (GDQM) was used coupled with the numerical iteration method for the nonlinear response. The results are discussed for the different simply-supported and clamped boundary conditions. The 2D-FG nanotube's behavior is analyzed for different nonlinear amplitudes, nonlocal strain gradient parameters and nonlocal parameters, different rates of cross-sections, and different material distributions.</description><identifier>ISSN: 1745-5030</identifier><identifier>EISSN: 1745-5049</identifier><identifier>DOI: 10.1080/17455030.2021.1956016</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Beam theory (structures) ; bi-directional FG ; Boundary conditions ; Cross-sections ; Differential equations ; Forced vibration ; functionally graded tube ; Functionally gradient materials ; Generalized differential quadrature method ; Hamilton's principle ; Iterative methods ; Nanotubes ; non-uniform tube ; Nonlinear response ; Nonlinear vibration ; nonlocal gradient strain theory ; Parameters ; Quadratures ; Strain analysis ; Thickness ; truncated conical tube ; Two dimensional analysis</subject><ispartof>Waves in random and complex media, 2024-07, Vol.34 (4), p.2366-2393</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13</citedby><cites>FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13</cites><orcidid>0000-0001-8138-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Fusheng</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><title>Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory</title><title>Waves in random and complex media</title><description>This paper deals with the free and forced, linear and nonlinear vibration of functionally graded (along with thickness) nanotube, considering the non-uniform cross-section that made a two-dimensional functionally graded (2D-FG) structure. The bi-dimensional nanostructure-dependent governing equation is modeled based on the classic beam theory (Euler-Bernoulli), and they are derived by Hamilton's principle based on nonlocal gradient strain theory considering the von-Kármán nonlinear strain and the external harmonic load. To solve the general equations and calculate the results, the generalized differential quadrature method (GDQM) was used coupled with the numerical iteration method for the nonlinear response. The results are discussed for the different simply-supported and clamped boundary conditions. The 2D-FG nanotube's behavior is analyzed for different nonlinear amplitudes, nonlocal strain gradient parameters and nonlocal parameters, different rates of cross-sections, and different material distributions.</description><subject>Beam theory (structures)</subject><subject>bi-directional FG</subject><subject>Boundary conditions</subject><subject>Cross-sections</subject><subject>Differential equations</subject><subject>Forced vibration</subject><subject>functionally graded tube</subject><subject>Functionally gradient materials</subject><subject>Generalized differential quadrature method</subject><subject>Hamilton's principle</subject><subject>Iterative methods</subject><subject>Nanotubes</subject><subject>non-uniform tube</subject><subject>Nonlinear response</subject><subject>Nonlinear vibration</subject><subject>nonlocal gradient strain theory</subject><subject>Parameters</subject><subject>Quadratures</subject><subject>Strain analysis</subject><subject>Thickness</subject><subject>truncated conical tube</subject><subject>Two dimensional analysis</subject><issn>1745-5030</issn><issn>1745-5049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKxDAULKKgrn6CEPC560nadNs3ZfEGi77oc0hz0UhN9CRV9if8ZlN39VEIZDJnZg6ZojihMKfQwhld1JxDBXMGjM5pxxugzU5xMPElh7rb_cMV7BeHMb4A1NBQdlB83QVfDs4bicSiMUR6TWxAZTT5cD3K5IInwZLeldqhUdNbDsSOfguHNXlCqbM-YSZlykgF71RWpbE3pJcxUzklPRvigx_CNJo8zvhEYkLpfoYB10fFnpVDNMfbe1Y8Xl0-LG_K1f317fJiVaqqalPJlKprw2QlAWyreMssgx4a2-l-oRSvm4WWHDrLGdjeGAOdbtuOatbnY2k1K043uW8Y3kcTk3gJI-bfRFFBW-UlvJtUfKNSGGJEY8UbuleJa0FBTNWL3-rFVL3YVp995xuf87nKV_kZcNAiyfUQ0KL0yuU1_0d8A-Tajdg</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Zhang, Fusheng</creator><creator>Lu, Wei</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8138-6862</orcidid></search><sort><creationdate>20240703</creationdate><title>Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory</title><author>Zhang, Fusheng ; Lu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Beam theory (structures)</topic><topic>bi-directional FG</topic><topic>Boundary conditions</topic><topic>Cross-sections</topic><topic>Differential equations</topic><topic>Forced vibration</topic><topic>functionally graded tube</topic><topic>Functionally gradient materials</topic><topic>Generalized differential quadrature method</topic><topic>Hamilton's principle</topic><topic>Iterative methods</topic><topic>Nanotubes</topic><topic>non-uniform tube</topic><topic>Nonlinear response</topic><topic>Nonlinear vibration</topic><topic>nonlocal gradient strain theory</topic><topic>Parameters</topic><topic>Quadratures</topic><topic>Strain analysis</topic><topic>Thickness</topic><topic>truncated conical tube</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fusheng</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Waves in random and complex media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fusheng</au><au>Lu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory</atitle><jtitle>Waves in random and complex media</jtitle><date>2024-07-03</date><risdate>2024</risdate><volume>34</volume><issue>4</issue><spage>2366</spage><epage>2393</epage><pages>2366-2393</pages><issn>1745-5030</issn><eissn>1745-5049</eissn><abstract>This paper deals with the free and forced, linear and nonlinear vibration of functionally graded (along with thickness) nanotube, considering the non-uniform cross-section that made a two-dimensional functionally graded (2D-FG) structure. The bi-dimensional nanostructure-dependent governing equation is modeled based on the classic beam theory (Euler-Bernoulli), and they are derived by Hamilton's principle based on nonlocal gradient strain theory considering the von-Kármán nonlinear strain and the external harmonic load. To solve the general equations and calculate the results, the generalized differential quadrature method (GDQM) was used coupled with the numerical iteration method for the nonlinear response. The results are discussed for the different simply-supported and clamped boundary conditions. The 2D-FG nanotube's behavior is analyzed for different nonlinear amplitudes, nonlocal strain gradient parameters and nonlocal parameters, different rates of cross-sections, and different material distributions.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/17455030.2021.1956016</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8138-6862</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-5030 |
ispartof | Waves in random and complex media, 2024-07, Vol.34 (4), p.2366-2393 |
issn | 1745-5030 1745-5049 |
language | eng |
recordid | cdi_crossref_primary_10_1080_17455030_2021_1956016 |
source | Taylor and Francis Science and Technology Collection |
subjects | Beam theory (structures) bi-directional FG Boundary conditions Cross-sections Differential equations Forced vibration functionally graded tube Functionally gradient materials Generalized differential quadrature method Hamilton's principle Iterative methods Nanotubes non-uniform tube Nonlinear response Nonlinear vibration nonlocal gradient strain theory Parameters Quadratures Strain analysis Thickness truncated conical tube Two dimensional analysis |
title | Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20free%20and%20forced%20vibration%20of%20bi-directional%20functionally%20graded%20truncated%20conical%20tube%20based%20on%20the%20nonlocal%20gradient%20strain%20theory&rft.jtitle=Waves%20in%20random%20and%20complex%20media&rft.au=Zhang,%20Fusheng&rft.date=2024-07-03&rft.volume=34&rft.issue=4&rft.spage=2366&rft.epage=2393&rft.pages=2366-2393&rft.issn=1745-5030&rft.eissn=1745-5049&rft_id=info:doi/10.1080/17455030.2021.1956016&rft_dat=%3Cproquest_cross%3E3083338591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-2cc44e2a3a00f8c582f20b06f9db7cc5467da509f520fbeee09d8891d2bd2bf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3083338591&rft_id=info:pmid/&rfr_iscdi=true |