Loading…

Convergence properties of harmonic measure distributions for planar domains

We establish sufficient conditions under which the harmonic measure distribution functions h n of a sequence of domains D n converge pointwise to the distribution function h of the limiting domain D, at all points of continuity of h. In the case of a model example, we establish this convergence of t...

Full description

Saved in:
Bibliographic Details
Published in:Complex variables and elliptic equations 2008-10, Vol.53 (10), p.897-913
Main Authors: Snipes, Marie A., Ward, Lesley A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53
cites cdi_FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53
container_end_page 913
container_issue 10
container_start_page 897
container_title Complex variables and elliptic equations
container_volume 53
creator Snipes, Marie A.
Ward, Lesley A.
description We establish sufficient conditions under which the harmonic measure distribution functions h n of a sequence of domains D n converge pointwise to the distribution function h of the limiting domain D, at all points of continuity of h. In the case of a model example, we establish this convergence of the distribution functions. Here, the value of the function h(r) gives the harmonic measure of the part of the boundary of the domain that lies within distance r of a fixed basepoint in the domain, thus relating the geometry of the domain to the behaviour of Brownian motion in the domain.
doi_str_mv 10.1080/17476930802166402
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17476930802166402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_17476930802166402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI4-gLu8QDVNc9MOuJHBPxxwo-tymyYaaZNy01Hn7e0w4mYQV_dw4TvncBg7z8VFLipxmZeq1ItikjLXWgl5wGbbX6YXKj_81UVxzE5SehdCgdJixh6XMXxYerXBWD5QHCyN3iYeHX9D6mPwhvcW05osb30ayTfr0ceQuIvEhw4DEm9jjz6kU3bksEv27OfO2cvtzfPyPls93T0sr1eZkaUeMxQgQWrZlgIcNI1ptXRlVTZgC9koic4oBZWqsIIFImhoiqqSAGAUgoVizvKdr6GYEllXD-R7pE2di3q7Rr23xsSUO8aHqXiPn5G6th5x00VyhMH4tE_V49c4kVf_ksXfwd91M3g3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence properties of harmonic measure distributions for planar domains</title><source>Taylor and Francis Science and Technology Collection</source><creator>Snipes, Marie A. ; Ward, Lesley A.</creator><creatorcontrib>Snipes, Marie A. ; Ward, Lesley A.</creatorcontrib><description>We establish sufficient conditions under which the harmonic measure distribution functions h n of a sequence of domains D n converge pointwise to the distribution function h of the limiting domain D, at all points of continuity of h. In the case of a model example, we establish this convergence of the distribution functions. Here, the value of the function h(r) gives the harmonic measure of the part of the boundary of the domain that lies within distance r of a fixed basepoint in the domain, thus relating the geometry of the domain to the behaviour of Brownian motion in the domain.</description><identifier>ISSN: 1747-6933</identifier><identifier>EISSN: 1747-6941</identifier><identifier>DOI: 10.1080/17476930802166402</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Brownian motion ; Carathéodory convergence ; Fréchet convergence ; harmonic measure ; harmonic measure distribution functions ; planar domains ; primary 30C85 ; secondary 30C20 ; step functions ; weak convergence of measures</subject><ispartof>Complex variables and elliptic equations, 2008-10, Vol.53 (10), p.897-913</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53</citedby><cites>FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Snipes, Marie A.</creatorcontrib><creatorcontrib>Ward, Lesley A.</creatorcontrib><title>Convergence properties of harmonic measure distributions for planar domains</title><title>Complex variables and elliptic equations</title><description>We establish sufficient conditions under which the harmonic measure distribution functions h n of a sequence of domains D n converge pointwise to the distribution function h of the limiting domain D, at all points of continuity of h. In the case of a model example, we establish this convergence of the distribution functions. Here, the value of the function h(r) gives the harmonic measure of the part of the boundary of the domain that lies within distance r of a fixed basepoint in the domain, thus relating the geometry of the domain to the behaviour of Brownian motion in the domain.</description><subject>Brownian motion</subject><subject>Carathéodory convergence</subject><subject>Fréchet convergence</subject><subject>harmonic measure</subject><subject>harmonic measure distribution functions</subject><subject>planar domains</subject><subject>primary 30C85</subject><subject>secondary 30C20</subject><subject>step functions</subject><subject>weak convergence of measures</subject><issn>1747-6933</issn><issn>1747-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI4-gLu8QDVNc9MOuJHBPxxwo-tymyYaaZNy01Hn7e0w4mYQV_dw4TvncBg7z8VFLipxmZeq1ItikjLXWgl5wGbbX6YXKj_81UVxzE5SehdCgdJixh6XMXxYerXBWD5QHCyN3iYeHX9D6mPwhvcW05osb30ayTfr0ceQuIvEhw4DEm9jjz6kU3bksEv27OfO2cvtzfPyPls93T0sr1eZkaUeMxQgQWrZlgIcNI1ptXRlVTZgC9koic4oBZWqsIIFImhoiqqSAGAUgoVizvKdr6GYEllXD-R7pE2di3q7Rr23xsSUO8aHqXiPn5G6th5x00VyhMH4tE_V49c4kVf_ksXfwd91M3g3</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Snipes, Marie A.</creator><creator>Ward, Lesley A.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081001</creationdate><title>Convergence properties of harmonic measure distributions for planar domains</title><author>Snipes, Marie A. ; Ward, Lesley A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Brownian motion</topic><topic>Carathéodory convergence</topic><topic>Fréchet convergence</topic><topic>harmonic measure</topic><topic>harmonic measure distribution functions</topic><topic>planar domains</topic><topic>primary 30C85</topic><topic>secondary 30C20</topic><topic>step functions</topic><topic>weak convergence of measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snipes, Marie A.</creatorcontrib><creatorcontrib>Ward, Lesley A.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex variables and elliptic equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snipes, Marie A.</au><au>Ward, Lesley A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence properties of harmonic measure distributions for planar domains</atitle><jtitle>Complex variables and elliptic equations</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>53</volume><issue>10</issue><spage>897</spage><epage>913</epage><pages>897-913</pages><issn>1747-6933</issn><eissn>1747-6941</eissn><abstract>We establish sufficient conditions under which the harmonic measure distribution functions h n of a sequence of domains D n converge pointwise to the distribution function h of the limiting domain D, at all points of continuity of h. In the case of a model example, we establish this convergence of the distribution functions. Here, the value of the function h(r) gives the harmonic measure of the part of the boundary of the domain that lies within distance r of a fixed basepoint in the domain, thus relating the geometry of the domain to the behaviour of Brownian motion in the domain.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/17476930802166402</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1747-6933
ispartof Complex variables and elliptic equations, 2008-10, Vol.53 (10), p.897-913
issn 1747-6933
1747-6941
language eng
recordid cdi_crossref_primary_10_1080_17476930802166402
source Taylor and Francis Science and Technology Collection
subjects Brownian motion
Carathéodory convergence
Fréchet convergence
harmonic measure
harmonic measure distribution functions
planar domains
primary 30C85
secondary 30C20
step functions
weak convergence of measures
title Convergence properties of harmonic measure distributions for planar domains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20properties%20of%20harmonic%20measure%20distributions%20for%20planar%20domains&rft.jtitle=Complex%20variables%20and%20elliptic%20equations&rft.au=Snipes,%20Marie%20A.&rft.date=2008-10-01&rft.volume=53&rft.issue=10&rft.spage=897&rft.epage=913&rft.pages=897-913&rft.issn=1747-6933&rft.eissn=1747-6941&rft_id=info:doi/10.1080/17476930802166402&rft_dat=%3Ccrossref_infor%3E10_1080_17476930802166402%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true