Loading…
Convergence properties of harmonic measure distributions for planar domains
We establish sufficient conditions under which the harmonic measure distribution functions h n of a sequence of domains D n converge pointwise to the distribution function h of the limiting domain D, at all points of continuity of h. In the case of a model example, we establish this convergence of t...
Saved in:
Published in: | Complex variables and elliptic equations 2008-10, Vol.53 (10), p.897-913 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53 |
container_end_page | 913 |
container_issue | 10 |
container_start_page | 897 |
container_title | Complex variables and elliptic equations |
container_volume | 53 |
creator | Snipes, Marie A. Ward, Lesley A. |
description | We establish sufficient conditions under which the harmonic measure distribution functions h
n
of a sequence of domains D
n
converge pointwise to the distribution function h of the limiting domain D, at all points of continuity of h. In the case of a model example, we establish this convergence of the distribution functions. Here, the value of the function h(r) gives the harmonic measure of the part of the boundary of the domain that lies within distance r of a fixed basepoint in the domain, thus relating the geometry of the domain to the behaviour of Brownian motion in the domain. |
doi_str_mv | 10.1080/17476930802166402 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17476930802166402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_17476930802166402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI4-gLu8QDVNc9MOuJHBPxxwo-tymyYaaZNy01Hn7e0w4mYQV_dw4TvncBg7z8VFLipxmZeq1ItikjLXWgl5wGbbX6YXKj_81UVxzE5SehdCgdJixh6XMXxYerXBWD5QHCyN3iYeHX9D6mPwhvcW05osb30ayTfr0ceQuIvEhw4DEm9jjz6kU3bksEv27OfO2cvtzfPyPls93T0sr1eZkaUeMxQgQWrZlgIcNI1ptXRlVTZgC9koic4oBZWqsIIFImhoiqqSAGAUgoVizvKdr6GYEllXD-R7pE2di3q7Rr23xsSUO8aHqXiPn5G6th5x00VyhMH4tE_V49c4kVf_ksXfwd91M3g3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence properties of harmonic measure distributions for planar domains</title><source>Taylor and Francis Science and Technology Collection</source><creator>Snipes, Marie A. ; Ward, Lesley A.</creator><creatorcontrib>Snipes, Marie A. ; Ward, Lesley A.</creatorcontrib><description>We establish sufficient conditions under which the harmonic measure distribution functions h
n
of a sequence of domains D
n
converge pointwise to the distribution function h of the limiting domain D, at all points of continuity of h. In the case of a model example, we establish this convergence of the distribution functions. Here, the value of the function h(r) gives the harmonic measure of the part of the boundary of the domain that lies within distance r of a fixed basepoint in the domain, thus relating the geometry of the domain to the behaviour of Brownian motion in the domain.</description><identifier>ISSN: 1747-6933</identifier><identifier>EISSN: 1747-6941</identifier><identifier>DOI: 10.1080/17476930802166402</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Brownian motion ; Carathéodory convergence ; Fréchet convergence ; harmonic measure ; harmonic measure distribution functions ; planar domains ; primary 30C85 ; secondary 30C20 ; step functions ; weak convergence of measures</subject><ispartof>Complex variables and elliptic equations, 2008-10, Vol.53 (10), p.897-913</ispartof><rights>Copyright Taylor & Francis Group, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53</citedby><cites>FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Snipes, Marie A.</creatorcontrib><creatorcontrib>Ward, Lesley A.</creatorcontrib><title>Convergence properties of harmonic measure distributions for planar domains</title><title>Complex variables and elliptic equations</title><description>We establish sufficient conditions under which the harmonic measure distribution functions h
n
of a sequence of domains D
n
converge pointwise to the distribution function h of the limiting domain D, at all points of continuity of h. In the case of a model example, we establish this convergence of the distribution functions. Here, the value of the function h(r) gives the harmonic measure of the part of the boundary of the domain that lies within distance r of a fixed basepoint in the domain, thus relating the geometry of the domain to the behaviour of Brownian motion in the domain.</description><subject>Brownian motion</subject><subject>Carathéodory convergence</subject><subject>Fréchet convergence</subject><subject>harmonic measure</subject><subject>harmonic measure distribution functions</subject><subject>planar domains</subject><subject>primary 30C85</subject><subject>secondary 30C20</subject><subject>step functions</subject><subject>weak convergence of measures</subject><issn>1747-6933</issn><issn>1747-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI4-gLu8QDVNc9MOuJHBPxxwo-tymyYaaZNy01Hn7e0w4mYQV_dw4TvncBg7z8VFLipxmZeq1ItikjLXWgl5wGbbX6YXKj_81UVxzE5SehdCgdJixh6XMXxYerXBWD5QHCyN3iYeHX9D6mPwhvcW05osb30ayTfr0ceQuIvEhw4DEm9jjz6kU3bksEv27OfO2cvtzfPyPls93T0sr1eZkaUeMxQgQWrZlgIcNI1ptXRlVTZgC9koic4oBZWqsIIFImhoiqqSAGAUgoVizvKdr6GYEllXD-R7pE2di3q7Rr23xsSUO8aHqXiPn5G6th5x00VyhMH4tE_V49c4kVf_ksXfwd91M3g3</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Snipes, Marie A.</creator><creator>Ward, Lesley A.</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081001</creationdate><title>Convergence properties of harmonic measure distributions for planar domains</title><author>Snipes, Marie A. ; Ward, Lesley A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Brownian motion</topic><topic>Carathéodory convergence</topic><topic>Fréchet convergence</topic><topic>harmonic measure</topic><topic>harmonic measure distribution functions</topic><topic>planar domains</topic><topic>primary 30C85</topic><topic>secondary 30C20</topic><topic>step functions</topic><topic>weak convergence of measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snipes, Marie A.</creatorcontrib><creatorcontrib>Ward, Lesley A.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex variables and elliptic equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snipes, Marie A.</au><au>Ward, Lesley A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence properties of harmonic measure distributions for planar domains</atitle><jtitle>Complex variables and elliptic equations</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>53</volume><issue>10</issue><spage>897</spage><epage>913</epage><pages>897-913</pages><issn>1747-6933</issn><eissn>1747-6941</eissn><abstract>We establish sufficient conditions under which the harmonic measure distribution functions h
n
of a sequence of domains D
n
converge pointwise to the distribution function h of the limiting domain D, at all points of continuity of h. In the case of a model example, we establish this convergence of the distribution functions. Here, the value of the function h(r) gives the harmonic measure of the part of the boundary of the domain that lies within distance r of a fixed basepoint in the domain, thus relating the geometry of the domain to the behaviour of Brownian motion in the domain.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/17476930802166402</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1747-6933 |
ispartof | Complex variables and elliptic equations, 2008-10, Vol.53 (10), p.897-913 |
issn | 1747-6933 1747-6941 |
language | eng |
recordid | cdi_crossref_primary_10_1080_17476930802166402 |
source | Taylor and Francis Science and Technology Collection |
subjects | Brownian motion Carathéodory convergence Fréchet convergence harmonic measure harmonic measure distribution functions planar domains primary 30C85 secondary 30C20 step functions weak convergence of measures |
title | Convergence properties of harmonic measure distributions for planar domains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20properties%20of%20harmonic%20measure%20distributions%20for%20planar%20domains&rft.jtitle=Complex%20variables%20and%20elliptic%20equations&rft.au=Snipes,%20Marie%20A.&rft.date=2008-10-01&rft.volume=53&rft.issue=10&rft.spage=897&rft.epage=913&rft.pages=897-913&rft.issn=1747-6933&rft.eissn=1747-6941&rft_id=info:doi/10.1080/17476930802166402&rft_dat=%3Ccrossref_infor%3E10_1080_17476930802166402%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-a0525262d705f5bbcd62f787b5e32b42afc445848a859aa565b3882555c4a5e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |