Loading…

On the essential spectrum of electromagnetic Schrödinger operator with singular electric potential

We consider the multidimensional electromagnetic Schrödinger operator with singular electric potential. Under certain conditions on the magnetic field and electric potential, we prove that the essential spectrum of the operator fills the positive semi-axis.

Saved in:
Bibliographic Details
Published in:Complex variables and elliptic equations 2014-01, Vol.59 (1), p.18-27
Main Authors: Aliev, A.R., Eyvazov, E.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-4d26866c38cffa9a043b9365be3ee8296e4bf0f0ee858b51a045b6636245b2623
cites cdi_FETCH-LOGICAL-c368t-4d26866c38cffa9a043b9365be3ee8296e4bf0f0ee858b51a045b6636245b2623
container_end_page 27
container_issue 1
container_start_page 18
container_title Complex variables and elliptic equations
container_volume 59
creator Aliev, A.R.
Eyvazov, E.H.
description We consider the multidimensional electromagnetic Schrödinger operator with singular electric potential. Under certain conditions on the magnetic field and electric potential, we prove that the essential spectrum of the operator fills the positive semi-axis.
doi_str_mv 10.1080/17476933.2012.697460
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17476933_2012_697460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3183878821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4d26866c38cffa9a043b9365be3ee8296e4bf0f0ee858b51a045b6636245b2623</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAxaW2LBpseOfJCuEKv6kSiyAteW44zZVEgfbUcXFuAAXw1WABQtWM_P0vafRQ-ickjklBbmiOc9lydg8IzSbyzLnkhygyV6eyZLTw9-dsWN0EsKWEC4SNEHmqcNxAxhCgC7WusGhBxP90GJnMTT73bV63UGsDX42G__5saq7NXjsevA6Oo93ddzgkMSh0f7bk-DexTHyFB1Z3QQ4-55T9Hp3-7J4mC2f7h8XN8uZYbKIM77KZCGlYYWxVpeacFaVTIoKGECRlRJ4ZYkl6RBFJWgCRCUlk1mamczYFF2Oub13bwOEqNo6GGga3YEbgqKCSCaoLERCL_6gWzf4Ln2nKM_zUhCe2CniI2W8C8GDVb2vW-3fFSVq37z6aV7tm1dj88l2Pdrqzjrf6p3zzUpF_d44b73uTB0U-zfhC4xci6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477950406</pqid></control><display><type>article</type><title>On the essential spectrum of electromagnetic Schrödinger operator with singular electric potential</title><source>Taylor and Francis Science and Technology Collection</source><creator>Aliev, A.R. ; Eyvazov, E.H.</creator><creatorcontrib>Aliev, A.R. ; Eyvazov, E.H.</creatorcontrib><description>We consider the multidimensional electromagnetic Schrödinger operator with singular electric potential. Under certain conditions on the magnetic field and electric potential, we prove that the essential spectrum of the operator fills the positive semi-axis.</description><identifier>ISSN: 1747-6933</identifier><identifier>EISSN: 1747-6941</identifier><identifier>DOI: 10.1080/17476933.2012.697460</identifier><language>eng</language><publisher>Colchester: Taylor &amp; Francis Group</publisher><subject>absolute spectrum ; Complex variables ; electromagnetic Schrödinger operator ; essential spectrum ; quantum mechanics ; self-adjoint operator</subject><ispartof>Complex variables and elliptic equations, 2014-01, Vol.59 (1), p.18-27</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2014</rights><rights>Copyright Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4d26866c38cffa9a043b9365be3ee8296e4bf0f0ee858b51a045b6636245b2623</citedby><cites>FETCH-LOGICAL-c368t-4d26866c38cffa9a043b9365be3ee8296e4bf0f0ee858b51a045b6636245b2623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aliev, A.R.</creatorcontrib><creatorcontrib>Eyvazov, E.H.</creatorcontrib><title>On the essential spectrum of electromagnetic Schrödinger operator with singular electric potential</title><title>Complex variables and elliptic equations</title><description>We consider the multidimensional electromagnetic Schrödinger operator with singular electric potential. Under certain conditions on the magnetic field and electric potential, we prove that the essential spectrum of the operator fills the positive semi-axis.</description><subject>absolute spectrum</subject><subject>Complex variables</subject><subject>electromagnetic Schrödinger operator</subject><subject>essential spectrum</subject><subject>quantum mechanics</subject><subject>self-adjoint operator</subject><issn>1747-6933</issn><issn>1747-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAxaW2LBpseOfJCuEKv6kSiyAteW44zZVEgfbUcXFuAAXw1WABQtWM_P0vafRQ-ickjklBbmiOc9lydg8IzSbyzLnkhygyV6eyZLTw9-dsWN0EsKWEC4SNEHmqcNxAxhCgC7WusGhBxP90GJnMTT73bV63UGsDX42G__5saq7NXjsevA6Oo93ddzgkMSh0f7bk-DexTHyFB1Z3QQ4-55T9Hp3-7J4mC2f7h8XN8uZYbKIM77KZCGlYYWxVpeacFaVTIoKGECRlRJ4ZYkl6RBFJWgCRCUlk1mamczYFF2Oub13bwOEqNo6GGga3YEbgqKCSCaoLERCL_6gWzf4Ln2nKM_zUhCe2CniI2W8C8GDVb2vW-3fFSVq37z6aV7tm1dj88l2Pdrqzjrf6p3zzUpF_d44b73uTB0U-zfhC4xci6o</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Aliev, A.R.</creator><creator>Eyvazov, E.H.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>On the essential spectrum of electromagnetic Schrödinger operator with singular electric potential</title><author>Aliev, A.R. ; Eyvazov, E.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4d26866c38cffa9a043b9365be3ee8296e4bf0f0ee858b51a045b6636245b2623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>absolute spectrum</topic><topic>Complex variables</topic><topic>electromagnetic Schrödinger operator</topic><topic>essential spectrum</topic><topic>quantum mechanics</topic><topic>self-adjoint operator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliev, A.R.</creatorcontrib><creatorcontrib>Eyvazov, E.H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Complex variables and elliptic equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliev, A.R.</au><au>Eyvazov, E.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the essential spectrum of electromagnetic Schrödinger operator with singular electric potential</atitle><jtitle>Complex variables and elliptic equations</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>59</volume><issue>1</issue><spage>18</spage><epage>27</epage><pages>18-27</pages><issn>1747-6933</issn><eissn>1747-6941</eissn><abstract>We consider the multidimensional electromagnetic Schrödinger operator with singular electric potential. Under certain conditions on the magnetic field and electric potential, we prove that the essential spectrum of the operator fills the positive semi-axis.</abstract><cop>Colchester</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/17476933.2012.697460</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1747-6933
ispartof Complex variables and elliptic equations, 2014-01, Vol.59 (1), p.18-27
issn 1747-6933
1747-6941
language eng
recordid cdi_crossref_primary_10_1080_17476933_2012_697460
source Taylor and Francis Science and Technology Collection
subjects absolute spectrum
Complex variables
electromagnetic Schrödinger operator
essential spectrum
quantum mechanics
self-adjoint operator
title On the essential spectrum of electromagnetic Schrödinger operator with singular electric potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20essential%20spectrum%20of%20electromagnetic%20Schr%C3%B6dinger%20operator%20with%20singular%20electric%20potential&rft.jtitle=Complex%20variables%20and%20elliptic%20equations&rft.au=Aliev,%20A.R.&rft.date=2014-01-01&rft.volume=59&rft.issue=1&rft.spage=18&rft.epage=27&rft.pages=18-27&rft.issn=1747-6933&rft.eissn=1747-6941&rft_id=info:doi/10.1080/17476933.2012.697460&rft_dat=%3Cproquest_cross%3E3183878821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-4d26866c38cffa9a043b9365be3ee8296e4bf0f0ee858b51a045b6636245b2623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1477950406&rft_id=info:pmid/&rfr_iscdi=true