Loading…

Improving the design of climate insurance: combining empirical approaches and modelling

Extreme weather due to climate change often disproportionately affects the weakest members of society. Agricultural insurance programs designed specifically for smallholders in developing countries are valuable tools that can help farmers to cope with the resulting risks. A broad range of methods in...

Full description

Saved in:
Bibliographic Details
Published in:Climate and development 2022-10, Vol.14 (9), p.804-813
Main Authors: Will, Meike, Backes, Annika, Campenni, Marco, Cronk, Lee, Dressler, Gunnar, Gornott, Christoph, Groeneveld, Jürgen, Habtemariam, Lemlem Teklegiorgis, Kraehnert, Kati, Kraus, Martin, Lenel, Friederike, Osgood, Daniel, Taye, Masresha, Müller, Birgit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c333t-3d6bee25b71ba4e07f00daf336595f2215d640b1f06cc88db49cd683447a890f3
container_end_page 813
container_issue 9
container_start_page 804
container_title Climate and development
container_volume 14
creator Will, Meike
Backes, Annika
Campenni, Marco
Cronk, Lee
Dressler, Gunnar
Gornott, Christoph
Groeneveld, Jürgen
Habtemariam, Lemlem Teklegiorgis
Kraehnert, Kati
Kraus, Martin
Lenel, Friederike
Osgood, Daniel
Taye, Masresha
Müller, Birgit
description Extreme weather due to climate change often disproportionately affects the weakest members of society. Agricultural insurance programs designed specifically for smallholders in developing countries are valuable tools that can help farmers to cope with the resulting risks. A broad range of methods including household surveys, experimental games, and agent-based models have been used to assess and improve the effectiveness of such climate insurance products. Furthermore, process-based crop models have been used to derive suitable insurance indices. However, climate change raises specific socioeconomic and environmental challenges that need to be considered when designing insurance schemes. We argue that, in light of these pressing challenges, some of the methodological approaches currently applied to study climate insurance reach their limits when applied independently. This has fundamental implications. On the one hand, not all undesired side effects of insurance can be detected and, on the other hand, insurance indices cannot be derived sufficiently well. We therefore advocate a sound combination of different methods, especially by linking empirical analyses and modelling, and underline the resulting potential with the help of stylized examples. Our study highlights how methodological synergies can make climate insurance products more effective in supporting the most vulnerable households, especially under changing climatic conditions.
doi_str_mv 10.1080/17565529.2021.2007837
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17565529_2021_2007837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2745228991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-3d6bee25b71ba4e07f00daf336595f2215d640b1f06cc88db49cd683447a890f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKuPIARct-YymWRcKcVLoeBGcRkyubQpM5MxmSp9ezO0unRzzuHw_-fyAXCN0RwjgW4xZyVjpJoTRHAOiAvKT8Bk7M8Yo_z0rybVObhIaYtQKRhnE_CxbPsYvny3hsPGQmOTX3cwOKgb36rBQt-lXVSdtndQh7b23Si1be-j16qBqs92pTc2QdUZ2AZjmyZLLsGZU02yV8c8Be9Pj2-Ll9nq9Xm5eFjNNKV0mFFT1tYSVnNcq8Ii7hAyylFasoo5QjAzZYFq7FCptRCmLiptSkGLgitRIUen4OYwN5_xubNpkNuwi11eKQkvGCGiqnBWsYNKx5BStE72Mb8X9xIjOTKUvwzlyFAeGWbf_cHnOxdiq75DbIwc1L4J0Y1UfJL0_xE_fkp44w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745228991</pqid></control><display><type>article</type><title>Improving the design of climate insurance: combining empirical approaches and modelling</title><source>Taylor and Francis Science and Technology Collection</source><creator>Will, Meike ; Backes, Annika ; Campenni, Marco ; Cronk, Lee ; Dressler, Gunnar ; Gornott, Christoph ; Groeneveld, Jürgen ; Habtemariam, Lemlem Teklegiorgis ; Kraehnert, Kati ; Kraus, Martin ; Lenel, Friederike ; Osgood, Daniel ; Taye, Masresha ; Müller, Birgit</creator><creatorcontrib>Will, Meike ; Backes, Annika ; Campenni, Marco ; Cronk, Lee ; Dressler, Gunnar ; Gornott, Christoph ; Groeneveld, Jürgen ; Habtemariam, Lemlem Teklegiorgis ; Kraehnert, Kati ; Kraus, Martin ; Lenel, Friederike ; Osgood, Daniel ; Taye, Masresha ; Müller, Birgit</creatorcontrib><description>Extreme weather due to climate change often disproportionately affects the weakest members of society. Agricultural insurance programs designed specifically for smallholders in developing countries are valuable tools that can help farmers to cope with the resulting risks. A broad range of methods including household surveys, experimental games, and agent-based models have been used to assess and improve the effectiveness of such climate insurance products. Furthermore, process-based crop models have been used to derive suitable insurance indices. However, climate change raises specific socioeconomic and environmental challenges that need to be considered when designing insurance schemes. We argue that, in light of these pressing challenges, some of the methodological approaches currently applied to study climate insurance reach their limits when applied independently. This has fundamental implications. On the one hand, not all undesired side effects of insurance can be detected and, on the other hand, insurance indices cannot be derived sufficiently well. We therefore advocate a sound combination of different methods, especially by linking empirical analyses and modelling, and underline the resulting potential with the help of stylized examples. Our study highlights how methodological synergies can make climate insurance products more effective in supporting the most vulnerable households, especially under changing climatic conditions.</description><identifier>ISSN: 1756-5529</identifier><identifier>EISSN: 1756-5537</identifier><identifier>DOI: 10.1080/17565529.2021.2007837</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Agricultural insurance ; Climate change ; Climate models ; Climatic conditions ; Climatic extremes ; Climatic indexes ; Design improvements ; Developing countries ; Empirical analysis ; empirical research ; Extreme weather ; Households ; Insurance ; LDCs ; Modelling ; risk management ; Side effects ; Surveys</subject><ispartof>Climate and development, 2022-10, Vol.14 (9), p.804-813</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c333t-3d6bee25b71ba4e07f00daf336595f2215d640b1f06cc88db49cd683447a890f3</cites><orcidid>0000-0001-7649-4869 ; 0000-0002-7380-6043 ; 0000-0003-2338-4636 ; 0000-0002-1769-3064 ; 0000-0001-9638-5862 ; 0000-0002-5008-4543 ; 0000-0001-8780-4420 ; 0000-0001-7319-9581 ; 0000-0003-3933-3358 ; 0000-0002-2833-6222 ; 0000-0002-7583-7417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Will, Meike</creatorcontrib><creatorcontrib>Backes, Annika</creatorcontrib><creatorcontrib>Campenni, Marco</creatorcontrib><creatorcontrib>Cronk, Lee</creatorcontrib><creatorcontrib>Dressler, Gunnar</creatorcontrib><creatorcontrib>Gornott, Christoph</creatorcontrib><creatorcontrib>Groeneveld, Jürgen</creatorcontrib><creatorcontrib>Habtemariam, Lemlem Teklegiorgis</creatorcontrib><creatorcontrib>Kraehnert, Kati</creatorcontrib><creatorcontrib>Kraus, Martin</creatorcontrib><creatorcontrib>Lenel, Friederike</creatorcontrib><creatorcontrib>Osgood, Daniel</creatorcontrib><creatorcontrib>Taye, Masresha</creatorcontrib><creatorcontrib>Müller, Birgit</creatorcontrib><title>Improving the design of climate insurance: combining empirical approaches and modelling</title><title>Climate and development</title><description>Extreme weather due to climate change often disproportionately affects the weakest members of society. Agricultural insurance programs designed specifically for smallholders in developing countries are valuable tools that can help farmers to cope with the resulting risks. A broad range of methods including household surveys, experimental games, and agent-based models have been used to assess and improve the effectiveness of such climate insurance products. Furthermore, process-based crop models have been used to derive suitable insurance indices. However, climate change raises specific socioeconomic and environmental challenges that need to be considered when designing insurance schemes. We argue that, in light of these pressing challenges, some of the methodological approaches currently applied to study climate insurance reach their limits when applied independently. This has fundamental implications. On the one hand, not all undesired side effects of insurance can be detected and, on the other hand, insurance indices cannot be derived sufficiently well. We therefore advocate a sound combination of different methods, especially by linking empirical analyses and modelling, and underline the resulting potential with the help of stylized examples. Our study highlights how methodological synergies can make climate insurance products more effective in supporting the most vulnerable households, especially under changing climatic conditions.</description><subject>Agricultural insurance</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic conditions</subject><subject>Climatic extremes</subject><subject>Climatic indexes</subject><subject>Design improvements</subject><subject>Developing countries</subject><subject>Empirical analysis</subject><subject>empirical research</subject><subject>Extreme weather</subject><subject>Households</subject><subject>Insurance</subject><subject>LDCs</subject><subject>Modelling</subject><subject>risk management</subject><subject>Side effects</subject><subject>Surveys</subject><issn>1756-5529</issn><issn>1756-5537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kMtKAzEUhoMoWKuPIARct-YymWRcKcVLoeBGcRkyubQpM5MxmSp9ezO0unRzzuHw_-fyAXCN0RwjgW4xZyVjpJoTRHAOiAvKT8Bk7M8Yo_z0rybVObhIaYtQKRhnE_CxbPsYvny3hsPGQmOTX3cwOKgb36rBQt-lXVSdtndQh7b23Si1be-j16qBqs92pTc2QdUZ2AZjmyZLLsGZU02yV8c8Be9Pj2-Ll9nq9Xm5eFjNNKV0mFFT1tYSVnNcq8Ii7hAyylFasoo5QjAzZYFq7FCptRCmLiptSkGLgitRIUen4OYwN5_xubNpkNuwi11eKQkvGCGiqnBWsYNKx5BStE72Mb8X9xIjOTKUvwzlyFAeGWbf_cHnOxdiq75DbIwc1L4J0Y1UfJL0_xE_fkp44w</recordid><startdate>20221021</startdate><enddate>20221021</enddate><creator>Will, Meike</creator><creator>Backes, Annika</creator><creator>Campenni, Marco</creator><creator>Cronk, Lee</creator><creator>Dressler, Gunnar</creator><creator>Gornott, Christoph</creator><creator>Groeneveld, Jürgen</creator><creator>Habtemariam, Lemlem Teklegiorgis</creator><creator>Kraehnert, Kati</creator><creator>Kraus, Martin</creator><creator>Lenel, Friederike</creator><creator>Osgood, Daniel</creator><creator>Taye, Masresha</creator><creator>Müller, Birgit</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7649-4869</orcidid><orcidid>https://orcid.org/0000-0002-7380-6043</orcidid><orcidid>https://orcid.org/0000-0003-2338-4636</orcidid><orcidid>https://orcid.org/0000-0002-1769-3064</orcidid><orcidid>https://orcid.org/0000-0001-9638-5862</orcidid><orcidid>https://orcid.org/0000-0002-5008-4543</orcidid><orcidid>https://orcid.org/0000-0001-8780-4420</orcidid><orcidid>https://orcid.org/0000-0001-7319-9581</orcidid><orcidid>https://orcid.org/0000-0003-3933-3358</orcidid><orcidid>https://orcid.org/0000-0002-2833-6222</orcidid><orcidid>https://orcid.org/0000-0002-7583-7417</orcidid></search><sort><creationdate>20221021</creationdate><title>Improving the design of climate insurance: combining empirical approaches and modelling</title><author>Will, Meike ; Backes, Annika ; Campenni, Marco ; Cronk, Lee ; Dressler, Gunnar ; Gornott, Christoph ; Groeneveld, Jürgen ; Habtemariam, Lemlem Teklegiorgis ; Kraehnert, Kati ; Kraus, Martin ; Lenel, Friederike ; Osgood, Daniel ; Taye, Masresha ; Müller, Birgit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-3d6bee25b71ba4e07f00daf336595f2215d640b1f06cc88db49cd683447a890f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural insurance</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic conditions</topic><topic>Climatic extremes</topic><topic>Climatic indexes</topic><topic>Design improvements</topic><topic>Developing countries</topic><topic>Empirical analysis</topic><topic>empirical research</topic><topic>Extreme weather</topic><topic>Households</topic><topic>Insurance</topic><topic>LDCs</topic><topic>Modelling</topic><topic>risk management</topic><topic>Side effects</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Will, Meike</creatorcontrib><creatorcontrib>Backes, Annika</creatorcontrib><creatorcontrib>Campenni, Marco</creatorcontrib><creatorcontrib>Cronk, Lee</creatorcontrib><creatorcontrib>Dressler, Gunnar</creatorcontrib><creatorcontrib>Gornott, Christoph</creatorcontrib><creatorcontrib>Groeneveld, Jürgen</creatorcontrib><creatorcontrib>Habtemariam, Lemlem Teklegiorgis</creatorcontrib><creatorcontrib>Kraehnert, Kati</creatorcontrib><creatorcontrib>Kraus, Martin</creatorcontrib><creatorcontrib>Lenel, Friederike</creatorcontrib><creatorcontrib>Osgood, Daniel</creatorcontrib><creatorcontrib>Taye, Masresha</creatorcontrib><creatorcontrib>Müller, Birgit</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Climate and development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Will, Meike</au><au>Backes, Annika</au><au>Campenni, Marco</au><au>Cronk, Lee</au><au>Dressler, Gunnar</au><au>Gornott, Christoph</au><au>Groeneveld, Jürgen</au><au>Habtemariam, Lemlem Teklegiorgis</au><au>Kraehnert, Kati</au><au>Kraus, Martin</au><au>Lenel, Friederike</au><au>Osgood, Daniel</au><au>Taye, Masresha</au><au>Müller, Birgit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the design of climate insurance: combining empirical approaches and modelling</atitle><jtitle>Climate and development</jtitle><date>2022-10-21</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>804</spage><epage>813</epage><pages>804-813</pages><issn>1756-5529</issn><eissn>1756-5537</eissn><abstract>Extreme weather due to climate change often disproportionately affects the weakest members of society. Agricultural insurance programs designed specifically for smallholders in developing countries are valuable tools that can help farmers to cope with the resulting risks. A broad range of methods including household surveys, experimental games, and agent-based models have been used to assess and improve the effectiveness of such climate insurance products. Furthermore, process-based crop models have been used to derive suitable insurance indices. However, climate change raises specific socioeconomic and environmental challenges that need to be considered when designing insurance schemes. We argue that, in light of these pressing challenges, some of the methodological approaches currently applied to study climate insurance reach their limits when applied independently. This has fundamental implications. On the one hand, not all undesired side effects of insurance can be detected and, on the other hand, insurance indices cannot be derived sufficiently well. We therefore advocate a sound combination of different methods, especially by linking empirical analyses and modelling, and underline the resulting potential with the help of stylized examples. Our study highlights how methodological synergies can make climate insurance products more effective in supporting the most vulnerable households, especially under changing climatic conditions.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17565529.2021.2007837</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7649-4869</orcidid><orcidid>https://orcid.org/0000-0002-7380-6043</orcidid><orcidid>https://orcid.org/0000-0003-2338-4636</orcidid><orcidid>https://orcid.org/0000-0002-1769-3064</orcidid><orcidid>https://orcid.org/0000-0001-9638-5862</orcidid><orcidid>https://orcid.org/0000-0002-5008-4543</orcidid><orcidid>https://orcid.org/0000-0001-8780-4420</orcidid><orcidid>https://orcid.org/0000-0001-7319-9581</orcidid><orcidid>https://orcid.org/0000-0003-3933-3358</orcidid><orcidid>https://orcid.org/0000-0002-2833-6222</orcidid><orcidid>https://orcid.org/0000-0002-7583-7417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-5529
ispartof Climate and development, 2022-10, Vol.14 (9), p.804-813
issn 1756-5529
1756-5537
language eng
recordid cdi_crossref_primary_10_1080_17565529_2021_2007837
source Taylor and Francis Science and Technology Collection
subjects Agricultural insurance
Climate change
Climate models
Climatic conditions
Climatic extremes
Climatic indexes
Design improvements
Developing countries
Empirical analysis
empirical research
Extreme weather
Households
Insurance
LDCs
Modelling
risk management
Side effects
Surveys
title Improving the design of climate insurance: combining empirical approaches and modelling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20design%20of%20climate%20insurance:%20combining%20empirical%20approaches%20and%20modelling&rft.jtitle=Climate%20and%20development&rft.au=Will,%20Meike&rft.date=2022-10-21&rft.volume=14&rft.issue=9&rft.spage=804&rft.epage=813&rft.pages=804-813&rft.issn=1756-5529&rft.eissn=1756-5537&rft_id=info:doi/10.1080/17565529.2021.2007837&rft_dat=%3Cproquest_cross%3E2745228991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-3d6bee25b71ba4e07f00daf336595f2215d640b1f06cc88db49cd683447a890f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2745228991&rft_id=info:pmid/&rfr_iscdi=true