Loading…
Remote Fabrication of DUPIC Fuel Pellets in a Hot Cell under Quality Assurance Program
The Korea Atomic Energy Research Institute (KAERI) has been developing the Direct Use of Spent Pressurized Water Reactor (PWR) Fuel in the CANada Deuterium Uranium (CANDU) Reactors (DUPIC) fuel fabrication technology since 1992, and the basic DUPIC fuel fabrication process was established in 2002. I...
Saved in:
Published in: | Journal of nuclear science and technology 2007-04, Vol.44 (4), p.597-606 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Korea Atomic Energy Research Institute (KAERI) has been developing the Direct Use of Spent Pressurized Water Reactor (PWR) Fuel in the CANada Deuterium Uranium (CANDU) Reactors (DUPIC) fuel fabrication technology since 1992, and the basic DUPIC fuel fabrication process was established in 2002. In order to demonstrate the robustness of the DUPIC fuel fabrication process through the irradiation test, it is important that a Quality Assurance (QA) program should be in place before a fabrication of the DUPIC fuel. Therefore, the Quality Assurance Manual (QM) for the DUPIC fuel was developed on the basis of the Canadian standard, CAN3-Z299.2-85. This manual describes the quality management system applicable to the activities performed for the DUPIC fuel fabrication at KAERI. In order to demonstrate the DUPIC fuel fabrication technology and produce qualified DUPIC fuel pellets, the process qualification tests were performed, which include three pre-qualification tests and three qualification tests. The characteristics of the DUPIC fuel pellets such as the sintered density, grain size, and surface roughness were measured and evaluated in accordance with the QA procedures. The optimum fabrication process of the DUPIC fuel pellet was also established based on the qualification results. Finally a production campaign was carried out to fabricate the DUPIC fuel pellets at a batch size of 1 kg following the QA program. As a result of the production campaign, qualified DUPIC fuel pellets were successfully produced and, therefore, the remote fuel fabrication technology of the DUPIC fuel pellet was demonstrated. |
---|---|
ISSN: | 0022-3131 1881-1248 |
DOI: | 10.1080/18811248.2007.9711848 |