Loading…
A data-driven approach to characterize the impact of connected and autonomous vehicles on traffic flow
This study presents a model to characterize changes in network traffic flows as a result of implementing connected and autonomous vehicle (CAV) technology based on traffic network and built-environment characteristics. To develop such a model, first, the POLARIS agent-based modeling platform is used...
Saved in:
Published in: | Transportation letters 2021-11, Vol.13 (10), p.687-695 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-590c4d9b8fff88c749413c9dd8e4f90fba39fbd4837ebf024ccc2cbc81cf0393 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-590c4d9b8fff88c749413c9dd8e4f90fba39fbd4837ebf024ccc2cbc81cf0393 |
container_end_page | 695 |
container_issue | 10 |
container_start_page | 687 |
container_title | Transportation letters |
container_volume | 13 |
creator | Parsa, Amir Bahador Shabanpour, Ramin Mohammadian, Abolfazl (Kouros) Auld, Joshua Stephens, Thomas |
description | This study presents a model to characterize changes in network traffic flows as a result of implementing connected and autonomous vehicle (CAV) technology based on traffic network and built-environment characteristics. To develop such a model, first, the POLARIS agent-based modeling platform is used to predict changes in average daily traffic (ADT) under CAV scenario in the road network of Chicago metropolitan area as the dependent variable of the model. Second, a comprehensive set of variables and indicators representing network characteristics and urban structure patterns are generated. Finally, three machine learning techniques, namely, K-Nearest neighbors, Random Forest, and eXtreme Gradient Boosting, are used to characterize changes in ADT based on network characteristics under a CAV scenario. The estimated models are validated and are found to yield acceptable performance. In addition, SHapley Additive exPlanations (SHAP) analysis tool is employed to investigate the impact of important features on changes in ADT. |
doi_str_mv | 10.1080/19427867.2020.1776956 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_19427867_2020_1776956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_19427867_2020_1776956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-590c4d9b8fff88c749413c9dd8e4f90fba39fbd4837ebf024ccc2cbc81cf0393</originalsourceid><addsrcrecordid>eNp9kM1qwzAQhEVpoWnaRyjoBZzKv5JuDaF_EOgldyGvtVjFloKkJKRPX4ekPfaw7M4sM4ePkMecLXIm2FMuq4KLhi8KVkwW542smysyO_kZF7y-_rsbfkvuYvxirGkEy2cEl7TTSWddsHvjqN5ug9fQ0-Qp9DpoSCbYb0NTb6gdt5OmHil458z06qh20-ySd370u0j3prcwmEi9oyloRAsUB3-4Jzeoh2geLntONq8vm9V7tv58-1gt1xmUNU9ZLRlUnWwFIgoBvJJVXoLsOmEqlAxbXUpsu0qU3LTIigoACmhB5ICslOWc1OdaCD7GYFBtgx11OKqcqRMr9ctKnVipC6sp93zOWYc-jPrgw9CppI-DDxi0AxtV-X_FD7Mec28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A data-driven approach to characterize the impact of connected and autonomous vehicles on traffic flow</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Parsa, Amir Bahador ; Shabanpour, Ramin ; Mohammadian, Abolfazl (Kouros) ; Auld, Joshua ; Stephens, Thomas</creator><creatorcontrib>Parsa, Amir Bahador ; Shabanpour, Ramin ; Mohammadian, Abolfazl (Kouros) ; Auld, Joshua ; Stephens, Thomas</creatorcontrib><description>This study presents a model to characterize changes in network traffic flows as a result of implementing connected and autonomous vehicle (CAV) technology based on traffic network and built-environment characteristics. To develop such a model, first, the POLARIS agent-based modeling platform is used to predict changes in average daily traffic (ADT) under CAV scenario in the road network of Chicago metropolitan area as the dependent variable of the model. Second, a comprehensive set of variables and indicators representing network characteristics and urban structure patterns are generated. Finally, three machine learning techniques, namely, K-Nearest neighbors, Random Forest, and eXtreme Gradient Boosting, are used to characterize changes in ADT based on network characteristics under a CAV scenario. The estimated models are validated and are found to yield acceptable performance. In addition, SHapley Additive exPlanations (SHAP) analysis tool is employed to investigate the impact of important features on changes in ADT.</description><identifier>ISSN: 1942-7867</identifier><identifier>EISSN: 1942-7875</identifier><identifier>DOI: 10.1080/19427867.2020.1776956</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Connected and autonomous vehicles ; machine learning ; POLARIS ; traffic flow</subject><ispartof>Transportation letters, 2021-11, Vol.13 (10), p.687-695</ispartof><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-590c4d9b8fff88c749413c9dd8e4f90fba39fbd4837ebf024ccc2cbc81cf0393</citedby><cites>FETCH-LOGICAL-c357t-590c4d9b8fff88c749413c9dd8e4f90fba39fbd4837ebf024ccc2cbc81cf0393</cites><orcidid>0000-0001-7142-0457 ; 0000-0003-3595-3664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Parsa, Amir Bahador</creatorcontrib><creatorcontrib>Shabanpour, Ramin</creatorcontrib><creatorcontrib>Mohammadian, Abolfazl (Kouros)</creatorcontrib><creatorcontrib>Auld, Joshua</creatorcontrib><creatorcontrib>Stephens, Thomas</creatorcontrib><title>A data-driven approach to characterize the impact of connected and autonomous vehicles on traffic flow</title><title>Transportation letters</title><description>This study presents a model to characterize changes in network traffic flows as a result of implementing connected and autonomous vehicle (CAV) technology based on traffic network and built-environment characteristics. To develop such a model, first, the POLARIS agent-based modeling platform is used to predict changes in average daily traffic (ADT) under CAV scenario in the road network of Chicago metropolitan area as the dependent variable of the model. Second, a comprehensive set of variables and indicators representing network characteristics and urban structure patterns are generated. Finally, three machine learning techniques, namely, K-Nearest neighbors, Random Forest, and eXtreme Gradient Boosting, are used to characterize changes in ADT based on network characteristics under a CAV scenario. The estimated models are validated and are found to yield acceptable performance. In addition, SHapley Additive exPlanations (SHAP) analysis tool is employed to investigate the impact of important features on changes in ADT.</description><subject>Connected and autonomous vehicles</subject><subject>machine learning</subject><subject>POLARIS</subject><subject>traffic flow</subject><issn>1942-7867</issn><issn>1942-7875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qwzAQhEVpoWnaRyjoBZzKv5JuDaF_EOgldyGvtVjFloKkJKRPX4ekPfaw7M4sM4ePkMecLXIm2FMuq4KLhi8KVkwW542smysyO_kZF7y-_rsbfkvuYvxirGkEy2cEl7TTSWddsHvjqN5ug9fQ0-Qp9DpoSCbYb0NTb6gdt5OmHil458z06qh20-ySd370u0j3prcwmEi9oyloRAsUB3-4Jzeoh2geLntONq8vm9V7tv58-1gt1xmUNU9ZLRlUnWwFIgoBvJJVXoLsOmEqlAxbXUpsu0qU3LTIigoACmhB5ICslOWc1OdaCD7GYFBtgx11OKqcqRMr9ctKnVipC6sp93zOWYc-jPrgw9CppI-DDxi0AxtV-X_FD7Mec28</recordid><startdate>20211126</startdate><enddate>20211126</enddate><creator>Parsa, Amir Bahador</creator><creator>Shabanpour, Ramin</creator><creator>Mohammadian, Abolfazl (Kouros)</creator><creator>Auld, Joshua</creator><creator>Stephens, Thomas</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7142-0457</orcidid><orcidid>https://orcid.org/0000-0003-3595-3664</orcidid></search><sort><creationdate>20211126</creationdate><title>A data-driven approach to characterize the impact of connected and autonomous vehicles on traffic flow</title><author>Parsa, Amir Bahador ; Shabanpour, Ramin ; Mohammadian, Abolfazl (Kouros) ; Auld, Joshua ; Stephens, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-590c4d9b8fff88c749413c9dd8e4f90fba39fbd4837ebf024ccc2cbc81cf0393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Connected and autonomous vehicles</topic><topic>machine learning</topic><topic>POLARIS</topic><topic>traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsa, Amir Bahador</creatorcontrib><creatorcontrib>Shabanpour, Ramin</creatorcontrib><creatorcontrib>Mohammadian, Abolfazl (Kouros)</creatorcontrib><creatorcontrib>Auld, Joshua</creatorcontrib><creatorcontrib>Stephens, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Transportation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsa, Amir Bahador</au><au>Shabanpour, Ramin</au><au>Mohammadian, Abolfazl (Kouros)</au><au>Auld, Joshua</au><au>Stephens, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven approach to characterize the impact of connected and autonomous vehicles on traffic flow</atitle><jtitle>Transportation letters</jtitle><date>2021-11-26</date><risdate>2021</risdate><volume>13</volume><issue>10</issue><spage>687</spage><epage>695</epage><pages>687-695</pages><issn>1942-7867</issn><eissn>1942-7875</eissn><abstract>This study presents a model to characterize changes in network traffic flows as a result of implementing connected and autonomous vehicle (CAV) technology based on traffic network and built-environment characteristics. To develop such a model, first, the POLARIS agent-based modeling platform is used to predict changes in average daily traffic (ADT) under CAV scenario in the road network of Chicago metropolitan area as the dependent variable of the model. Second, a comprehensive set of variables and indicators representing network characteristics and urban structure patterns are generated. Finally, three machine learning techniques, namely, K-Nearest neighbors, Random Forest, and eXtreme Gradient Boosting, are used to characterize changes in ADT based on network characteristics under a CAV scenario. The estimated models are validated and are found to yield acceptable performance. In addition, SHapley Additive exPlanations (SHAP) analysis tool is employed to investigate the impact of important features on changes in ADT.</abstract><pub>Taylor & Francis</pub><doi>10.1080/19427867.2020.1776956</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7142-0457</orcidid><orcidid>https://orcid.org/0000-0003-3595-3664</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-7867 |
ispartof | Transportation letters, 2021-11, Vol.13 (10), p.687-695 |
issn | 1942-7867 1942-7875 |
language | eng |
recordid | cdi_crossref_primary_10_1080_19427867_2020_1776956 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Connected and autonomous vehicles machine learning POLARIS traffic flow |
title | A data-driven approach to characterize the impact of connected and autonomous vehicles on traffic flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20approach%20to%20characterize%20the%20impact%20of%20connected%20and%20autonomous%20vehicles%20on%20traffic%20flow&rft.jtitle=Transportation%20letters&rft.au=Parsa,%20Amir%20Bahador&rft.date=2021-11-26&rft.volume=13&rft.issue=10&rft.spage=687&rft.epage=695&rft.pages=687-695&rft.issn=1942-7867&rft.eissn=1942-7875&rft_id=info:doi/10.1080/19427867.2020.1776956&rft_dat=%3Ccrossref_infor%3E10_1080_19427867_2020_1776956%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-590c4d9b8fff88c749413c9dd8e4f90fba39fbd4837ebf024ccc2cbc81cf0393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |