Loading…
Nitrogen budget and effluent nitrogen components in aquaponics recirculation system
In this study, the dynamics of nitrogen through aquaponics recirculation system was examined by developing a nitrogen budget. The model evaluated total ammonia nitrogen (TAN) production and removal in biofilters, identifying and quantifying the fate of nitrate nitrogen (NO3--N) and determining the s...
Saved in:
Published in: | Desalination and water treatment 2014, Vol.52 (4-6), p.744-752 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the dynamics of nitrogen through aquaponics recirculation system was examined by developing a nitrogen budget. The model evaluated total ammonia nitrogen (TAN) production and removal in biofilters, identifying and quantifying the fate of nitrate nitrogen (NO3--N) and determining the system maximum carrying capacity. Of the nitrogen input into the culture tank via feed, 83.8% was recovered from different pool: 39.4% as fish flesh (harvested), 2.1% as mortalities, 34.7% as dissolved inorganic forms of nitrogen and 7.6% as total organic nitrogen. The remaining 16.2% of nitrogen unaccounted for likely was lost as nitrogen gas due to passive denitrification and as volatization of ammonia. Average TAN in the culture tanks was 2.08 mg/L. Under current condition, system loading with fish biomass at average of 68.5% of the maximum predicted. The hydroponic troughs removal efficiency averaged 60.4% TAN per pass. From TAN production, 88% was removed in hydroponic troughs, 11% by passive nitrification and 1% by water exchange. Under conditions of reusing treated effluent with residual TAN, the hydroponic troughs work normally, while TAN in the systems did not increase noticeably. |
---|---|
ISSN: | 1944-3986 1944-3986 |
DOI: | 10.1080/19443994.2013.826336 |