Loading…

Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker

Basket trial designs enroll patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy. However, the explicit biomarker sometimes may not be clearly identified. In this article, we propose a Bayesian basket trial design to acc...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in biopharmaceutical research 2022-08, Vol.14 (3), p.342-348
Main Authors: Belay, Sheferaw Y., Guo, Xiang, Lin, Xiao, Xia, Fan, Xu, Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563
cites cdi_FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563
container_end_page 348
container_issue 3
container_start_page 342
container_title Statistics in biopharmaceutical research
container_volume 14
creator Belay, Sheferaw Y.
Guo, Xiang
Lin, Xiao
Xia, Fan
Xu, Jin
description Basket trial designs enroll patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy. However, the explicit biomarker sometimes may not be clearly identified. In this article, we propose a Bayesian basket trial design to account for multiple cutoffs of ambiguous biomarkers and select the optimal cutoff window to maximize the beneficial subpopulation. A two-stage design is proposed for the estimation. Second, we propose threshold calibration and sample size determination to facilitate the design. Extensive simulations are conducted to demonstrate the operating characteristics of the two estimation methods in terms of probability of correct selection of optimal cutoff window and probability of efficacy.
doi_str_mv 10.1080/19466315.2022.2029555
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_19466315_2022_2029555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_19466315_2022_2029555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWKuPIOQFtuZnJ23ubKtVoeJN8TbM7iYldrspyS7St3eXVvDKm5nhDOcw8xFyz9mEsxl74DpXSnKYCCbEUDQAXJDRoGfD4vLPfE1uUvpiTOWcwYh8LvBok8eGLjDtbEs30WNNn3pt29B5WYauaX2zpS5E-t7VrT_Uli67NjiXaHC0d873hd92oUt04cMe487GW3LlsE727tzHZLN63ixfs_XHy9tyvs5KyVmbFVNZclnkVrlCFForp2d5VSEgAylgqmQlAHMErh1K4DMOuRAFQ80cAyXHBE6xZQwpRevMIfr-gqPhzAxszC8bM7AxZza97_Hk803_1x6_Q6wr0-KxDtFFbEqfjPw_4geVF2q5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Belay, Sheferaw Y. ; Guo, Xiang ; Lin, Xiao ; Xia, Fan ; Xu, Jin</creator><creatorcontrib>Belay, Sheferaw Y. ; Guo, Xiang ; Lin, Xiao ; Xia, Fan ; Xu, Jin</creatorcontrib><description>Basket trial designs enroll patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy. However, the explicit biomarker sometimes may not be clearly identified. In this article, we propose a Bayesian basket trial design to account for multiple cutoffs of ambiguous biomarkers and select the optimal cutoff window to maximize the beneficial subpopulation. A two-stage design is proposed for the estimation. Second, we propose threshold calibration and sample size determination to facilitate the design. Extensive simulations are conducted to demonstrate the operating characteristics of the two estimation methods in terms of probability of correct selection of optimal cutoff window and probability of efficacy.</description><identifier>ISSN: 1946-6315</identifier><identifier>EISSN: 1946-6315</identifier><identifier>DOI: 10.1080/19466315.2022.2029555</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Basket trial ; Bayesian design ; Biomarker ; Two-stage design</subject><ispartof>Statistics in biopharmaceutical research, 2022-08, Vol.14 (3), p.342-348</ispartof><rights>2022 American Statistical Association 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563</citedby><cites>FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Belay, Sheferaw Y.</creatorcontrib><creatorcontrib>Guo, Xiang</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Xia, Fan</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><title>Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker</title><title>Statistics in biopharmaceutical research</title><description>Basket trial designs enroll patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy. However, the explicit biomarker sometimes may not be clearly identified. In this article, we propose a Bayesian basket trial design to account for multiple cutoffs of ambiguous biomarkers and select the optimal cutoff window to maximize the beneficial subpopulation. A two-stage design is proposed for the estimation. Second, we propose threshold calibration and sample size determination to facilitate the design. Extensive simulations are conducted to demonstrate the operating characteristics of the two estimation methods in terms of probability of correct selection of optimal cutoff window and probability of efficacy.</description><subject>Basket trial</subject><subject>Bayesian design</subject><subject>Biomarker</subject><subject>Two-stage design</subject><issn>1946-6315</issn><issn>1946-6315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWKuPIOQFtuZnJ23ubKtVoeJN8TbM7iYldrspyS7St3eXVvDKm5nhDOcw8xFyz9mEsxl74DpXSnKYCCbEUDQAXJDRoGfD4vLPfE1uUvpiTOWcwYh8LvBok8eGLjDtbEs30WNNn3pt29B5WYauaX2zpS5E-t7VrT_Uli67NjiXaHC0d873hd92oUt04cMe487GW3LlsE727tzHZLN63ixfs_XHy9tyvs5KyVmbFVNZclnkVrlCFForp2d5VSEgAylgqmQlAHMErh1K4DMOuRAFQ80cAyXHBE6xZQwpRevMIfr-gqPhzAxszC8bM7AxZza97_Hk803_1x6_Q6wr0-KxDtFFbEqfjPw_4geVF2q5</recordid><startdate>20220803</startdate><enddate>20220803</enddate><creator>Belay, Sheferaw Y.</creator><creator>Guo, Xiang</creator><creator>Lin, Xiao</creator><creator>Xia, Fan</creator><creator>Xu, Jin</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220803</creationdate><title>Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker</title><author>Belay, Sheferaw Y. ; Guo, Xiang ; Lin, Xiao ; Xia, Fan ; Xu, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basket trial</topic><topic>Bayesian design</topic><topic>Biomarker</topic><topic>Two-stage design</topic><toplevel>online_resources</toplevel><creatorcontrib>Belay, Sheferaw Y.</creatorcontrib><creatorcontrib>Guo, Xiang</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Xia, Fan</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics in biopharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belay, Sheferaw Y.</au><au>Guo, Xiang</au><au>Lin, Xiao</au><au>Xia, Fan</au><au>Xu, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker</atitle><jtitle>Statistics in biopharmaceutical research</jtitle><date>2022-08-03</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>342</spage><epage>348</epage><pages>342-348</pages><issn>1946-6315</issn><eissn>1946-6315</eissn><abstract>Basket trial designs enroll patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy. However, the explicit biomarker sometimes may not be clearly identified. In this article, we propose a Bayesian basket trial design to account for multiple cutoffs of ambiguous biomarkers and select the optimal cutoff window to maximize the beneficial subpopulation. A two-stage design is proposed for the estimation. Second, we propose threshold calibration and sample size determination to facilitate the design. Extensive simulations are conducted to demonstrate the operating characteristics of the two estimation methods in terms of probability of correct selection of optimal cutoff window and probability of efficacy.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/19466315.2022.2029555</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1946-6315
ispartof Statistics in biopharmaceutical research, 2022-08, Vol.14 (3), p.342-348
issn 1946-6315
1946-6315
language eng
recordid cdi_crossref_primary_10_1080_19466315_2022_2029555
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Basket trial
Bayesian design
Biomarker
Two-stage design
title Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Basket%20Trial%20Design%20Accounting%20for%20Multiple%20Cutoffs%20of%20an%20Ambiguous%20Biomarker&rft.jtitle=Statistics%20in%20biopharmaceutical%20research&rft.au=Belay,%20Sheferaw%20Y.&rft.date=2022-08-03&rft.volume=14&rft.issue=3&rft.spage=342&rft.epage=348&rft.pages=342-348&rft.issn=1946-6315&rft.eissn=1946-6315&rft_id=info:doi/10.1080/19466315.2022.2029555&rft_dat=%3Ccrossref_infor%3E10_1080_19466315_2022_2029555%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true