Loading…
Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker
Basket trial designs enroll patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy. However, the explicit biomarker sometimes may not be clearly identified. In this article, we propose a Bayesian basket trial design to acc...
Saved in:
Published in: | Statistics in biopharmaceutical research 2022-08, Vol.14 (3), p.342-348 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563 |
---|---|
cites | cdi_FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563 |
container_end_page | 348 |
container_issue | 3 |
container_start_page | 342 |
container_title | Statistics in biopharmaceutical research |
container_volume | 14 |
creator | Belay, Sheferaw Y. Guo, Xiang Lin, Xiao Xia, Fan Xu, Jin |
description | Basket trial designs enroll patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy. However, the explicit biomarker sometimes may not be clearly identified. In this article, we propose a Bayesian basket trial design to account for multiple cutoffs of ambiguous biomarkers and select the optimal cutoff window to maximize the beneficial subpopulation. A two-stage design is proposed for the estimation. Second, we propose threshold calibration and sample size determination to facilitate the design. Extensive simulations are conducted to demonstrate the operating characteristics of the two estimation methods in terms of probability of correct selection of optimal cutoff window and probability of efficacy. |
doi_str_mv | 10.1080/19466315.2022.2029555 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_19466315_2022_2029555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_19466315_2022_2029555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWKuPIOQFtuZnJ23ubKtVoeJN8TbM7iYldrspyS7St3eXVvDKm5nhDOcw8xFyz9mEsxl74DpXSnKYCCbEUDQAXJDRoGfD4vLPfE1uUvpiTOWcwYh8LvBok8eGLjDtbEs30WNNn3pt29B5WYauaX2zpS5E-t7VrT_Uli67NjiXaHC0d873hd92oUt04cMe487GW3LlsE727tzHZLN63ixfs_XHy9tyvs5KyVmbFVNZclnkVrlCFForp2d5VSEgAylgqmQlAHMErh1K4DMOuRAFQ80cAyXHBE6xZQwpRevMIfr-gqPhzAxszC8bM7AxZza97_Hk803_1x6_Q6wr0-KxDtFFbEqfjPw_4geVF2q5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Belay, Sheferaw Y. ; Guo, Xiang ; Lin, Xiao ; Xia, Fan ; Xu, Jin</creator><creatorcontrib>Belay, Sheferaw Y. ; Guo, Xiang ; Lin, Xiao ; Xia, Fan ; Xu, Jin</creatorcontrib><description>Basket trial designs enroll patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy. However, the explicit biomarker sometimes may not be clearly identified. In this article, we propose a Bayesian basket trial design to account for multiple cutoffs of ambiguous biomarkers and select the optimal cutoff window to maximize the beneficial subpopulation. A two-stage design is proposed for the estimation. Second, we propose threshold calibration and sample size determination to facilitate the design. Extensive simulations are conducted to demonstrate the operating characteristics of the two estimation methods in terms of probability of correct selection of optimal cutoff window and probability of efficacy.</description><identifier>ISSN: 1946-6315</identifier><identifier>EISSN: 1946-6315</identifier><identifier>DOI: 10.1080/19466315.2022.2029555</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Basket trial ; Bayesian design ; Biomarker ; Two-stage design</subject><ispartof>Statistics in biopharmaceutical research, 2022-08, Vol.14 (3), p.342-348</ispartof><rights>2022 American Statistical Association 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563</citedby><cites>FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Belay, Sheferaw Y.</creatorcontrib><creatorcontrib>Guo, Xiang</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Xia, Fan</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><title>Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker</title><title>Statistics in biopharmaceutical research</title><description>Basket trial designs enroll patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy. However, the explicit biomarker sometimes may not be clearly identified. In this article, we propose a Bayesian basket trial design to account for multiple cutoffs of ambiguous biomarkers and select the optimal cutoff window to maximize the beneficial subpopulation. A two-stage design is proposed for the estimation. Second, we propose threshold calibration and sample size determination to facilitate the design. Extensive simulations are conducted to demonstrate the operating characteristics of the two estimation methods in terms of probability of correct selection of optimal cutoff window and probability of efficacy.</description><subject>Basket trial</subject><subject>Bayesian design</subject><subject>Biomarker</subject><subject>Two-stage design</subject><issn>1946-6315</issn><issn>1946-6315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWKuPIOQFtuZnJ23ubKtVoeJN8TbM7iYldrspyS7St3eXVvDKm5nhDOcw8xFyz9mEsxl74DpXSnKYCCbEUDQAXJDRoGfD4vLPfE1uUvpiTOWcwYh8LvBok8eGLjDtbEs30WNNn3pt29B5WYauaX2zpS5E-t7VrT_Uli67NjiXaHC0d873hd92oUt04cMe487GW3LlsE727tzHZLN63ixfs_XHy9tyvs5KyVmbFVNZclnkVrlCFForp2d5VSEgAylgqmQlAHMErh1K4DMOuRAFQ80cAyXHBE6xZQwpRevMIfr-gqPhzAxszC8bM7AxZza97_Hk803_1x6_Q6wr0-KxDtFFbEqfjPw_4geVF2q5</recordid><startdate>20220803</startdate><enddate>20220803</enddate><creator>Belay, Sheferaw Y.</creator><creator>Guo, Xiang</creator><creator>Lin, Xiao</creator><creator>Xia, Fan</creator><creator>Xu, Jin</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220803</creationdate><title>Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker</title><author>Belay, Sheferaw Y. ; Guo, Xiang ; Lin, Xiao ; Xia, Fan ; Xu, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basket trial</topic><topic>Bayesian design</topic><topic>Biomarker</topic><topic>Two-stage design</topic><toplevel>online_resources</toplevel><creatorcontrib>Belay, Sheferaw Y.</creatorcontrib><creatorcontrib>Guo, Xiang</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Xia, Fan</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics in biopharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belay, Sheferaw Y.</au><au>Guo, Xiang</au><au>Lin, Xiao</au><au>Xia, Fan</au><au>Xu, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker</atitle><jtitle>Statistics in biopharmaceutical research</jtitle><date>2022-08-03</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>342</spage><epage>348</epage><pages>342-348</pages><issn>1946-6315</issn><eissn>1946-6315</eissn><abstract>Basket trial designs enroll patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy. However, the explicit biomarker sometimes may not be clearly identified. In this article, we propose a Bayesian basket trial design to account for multiple cutoffs of ambiguous biomarkers and select the optimal cutoff window to maximize the beneficial subpopulation. A two-stage design is proposed for the estimation. Second, we propose threshold calibration and sample size determination to facilitate the design. Extensive simulations are conducted to demonstrate the operating characteristics of the two estimation methods in terms of probability of correct selection of optimal cutoff window and probability of efficacy.</abstract><pub>Taylor & Francis</pub><doi>10.1080/19466315.2022.2029555</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1946-6315 |
ispartof | Statistics in biopharmaceutical research, 2022-08, Vol.14 (3), p.342-348 |
issn | 1946-6315 1946-6315 |
language | eng |
recordid | cdi_crossref_primary_10_1080_19466315_2022_2029555 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Basket trial Bayesian design Biomarker Two-stage design |
title | Bayesian Basket Trial Design Accounting for Multiple Cutoffs of an Ambiguous Biomarker |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Basket%20Trial%20Design%20Accounting%20for%20Multiple%20Cutoffs%20of%20an%20Ambiguous%20Biomarker&rft.jtitle=Statistics%20in%20biopharmaceutical%20research&rft.au=Belay,%20Sheferaw%20Y.&rft.date=2022-08-03&rft.volume=14&rft.issue=3&rft.spage=342&rft.epage=348&rft.pages=342-348&rft.issn=1946-6315&rft.eissn=1946-6315&rft_id=info:doi/10.1080/19466315.2022.2029555&rft_dat=%3Ccrossref_infor%3E10_1080_19466315_2022_2029555%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-b73c13b4e6fb2b996f984dda5a05325763d25a4a519fa351815422b0a90f0563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |