Loading…

Effective parameters on polydimethylsiloxane/graphene composite-based triboelectric nanogenerator performance

This paper systematically investigates the effective parameter on the performance of polydimethylsiloxane/graphene (PDMS@Gr)-based triboelectric nanogenerators (TENGs) as well as their applications. PDMS@Gr films containing 0, 0.05, 0.5, 1, and 1.5 wt.% graphene are synthesized, and their surface ch...

Full description

Saved in:
Bibliographic Details
Published in:International journal of smart and nano materials 2024-04, Vol.15 (2), p.365-386
Main Authors: Salemi, Fattaneh, Karimzadeh, Fathallah, Abbasi, Mohammad-Hasan, Moradi, Fatemeh, Pham, Duc Hoa, Kim, Jaehwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper systematically investigates the effective parameter on the performance of polydimethylsiloxane/graphene (PDMS@Gr)-based triboelectric nanogenerators (TENGs) as well as their applications. PDMS@Gr films containing 0, 0.05, 0.5, 1, and 1.5 wt.% graphene are synthesized, and their surface characteristics, mechanical behavior, and electrical properties are characterized. Vertical contact-separation mode TENGs are fabricated, and their performance is evaluated. The results demonstrate that the surface roughness and surface charge density are the most critical parameters for the performance of PDMS@Gr-based TENGs compared to the electrical and mechanical properties of the friction layers. The PDMS@Gr-based TENG with 1 wt.% graphene shows the highest power output of 2.6 W/m 2 at an optimized working condition (5 Hz and 15 N). It also exhibits stable power output until 15,000 working cycles and displays battery-free applications by powering a light-emitting diode (LED) array, a calculator, a digital watch, and a digital thermometer.
ISSN:1947-5411
1947-542X
DOI:10.1080/19475411.2024.2352481