Loading…

Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria

The possible changes in precipitation of Syrian due to climate change are projected in this study. The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to identify the best general circulation models (GCMs) for precipitation projections. The effectiveness of...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of computational fluid mechanics 2020-01, Vol.14 (1), p.90-106
Main Authors: Homsi, Rajab, Shiru, Mohammed Sanusi, Shahid, Shamsuddin, Ismail, Tarmizi, Harun, Sobri Bin, Al-Ansari, Nadhir, Chau, Kwok-Wing, Yaseen, Zaher Mundher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053
cites cdi_FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053
container_end_page 106
container_issue 1
container_start_page 90
container_title Engineering applications of computational fluid mechanics
container_volume 14
creator Homsi, Rajab
Shiru, Mohammed Sanusi
Shahid, Shamsuddin
Ismail, Tarmizi
Harun, Sobri Bin
Al-Ansari, Nadhir
Chau, Kwok-Wing
Yaseen, Zaher Mundher
description The possible changes in precipitation of Syrian due to climate change are projected in this study. The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to identify the best general circulation models (GCMs) for precipitation projections. The effectiveness of four bias correction methods, linear scaling (LS), power transformation (PT), general quantile mapping (GEQM), and gamma quantile mapping (GAQM) is assessed in downscaling GCM simulated precipitation. A random forest (RF) model is performed to generate the multi model ensemble (MME) of precipitation projections for four representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5. The results showed that the best suited GCMs for climate projection of Syria are HadGEM2-AO, CSIRO-Mk3-6-0, NorESM1-M, and CESM1-CAM5. The LS demonstrated the highest capability for precipitation downscaling. Annual changes in precipitation is projected to decrease by −30 to −85.2% for RCPs 4.5, 6.0, and 8.5, while by < 0.0 to −30% for RCP 2.6. The precipitation is projected to decrease in the entire country for RCP 6.0, while increase in some parts for other RCPs during wet season. The dry season of precipitation is simulated to decrease by −12 to −93%, which indicated a drier climate for the country in the future.
doi_str_mv 10.1080/19942060.2019.1683076
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_19942060_2019_1683076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1d666de4f7d54c138edc85433d35bfdc</doaj_id><sourcerecordid>2466209194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1oICHJTwgYeq03kiXro6eGbT4WEhpIG3ooCFkaLVq81layE_bfR7tOA7n0pGH0zMMwb1GcYzTDSKALLCWtEUOzGmE5w0wQxNlBcZz7vEKI_P60r2m1g46Ks5R8ixrECcacHhd_HiIYv_GDHnzoy00MKzD7cky-X5a6nN8vHpryZn5fQp9g3XZQroOF7mv-i7DMqO5K3z9DGvxysgRXPm6j16fFodNdgrO396T4dX31c35b3f24Wcwv7ypDhRgqUuO8jeOMIyEd1lRgKywQR2pLndOSA3AQbU0YrbEgpuGSsdoYK6XgqCEnxWLy2qBXahP9WsetCtqrfSPEpdJx8KYDhS1jzAJ13DbUYCLAGtFQQixpWmdNdn2ZXOkFNmP7wfbdP13ubd0wKs4Y5Rn_POH5cn_HfAO1CmPMJ0mqpnlJJLGkmWomysSQUgT3rsVI7WJU_2JUuxjVW4x57ts053sX4lq_hNhZNehtF6KLujc-KfJ_xSv-uKKz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466209194</pqid></control><display><type>article</type><title>Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria</title><source>Taylor &amp; Francis Open Access(OpenAccess)</source><creator>Homsi, Rajab ; Shiru, Mohammed Sanusi ; Shahid, Shamsuddin ; Ismail, Tarmizi ; Harun, Sobri Bin ; Al-Ansari, Nadhir ; Chau, Kwok-Wing ; Yaseen, Zaher Mundher</creator><creatorcontrib>Homsi, Rajab ; Shiru, Mohammed Sanusi ; Shahid, Shamsuddin ; Ismail, Tarmizi ; Harun, Sobri Bin ; Al-Ansari, Nadhir ; Chau, Kwok-Wing ; Yaseen, Zaher Mundher</creatorcontrib><description>The possible changes in precipitation of Syrian due to climate change are projected in this study. The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to identify the best general circulation models (GCMs) for precipitation projections. The effectiveness of four bias correction methods, linear scaling (LS), power transformation (PT), general quantile mapping (GEQM), and gamma quantile mapping (GAQM) is assessed in downscaling GCM simulated precipitation. A random forest (RF) model is performed to generate the multi model ensemble (MME) of precipitation projections for four representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5. The results showed that the best suited GCMs for climate projection of Syria are HadGEM2-AO, CSIRO-Mk3-6-0, NorESM1-M, and CESM1-CAM5. The LS demonstrated the highest capability for precipitation downscaling. Annual changes in precipitation is projected to decrease by −30 to −85.2% for RCPs 4.5, 6.0, and 8.5, while by &lt; 0.0 to −30% for RCP 2.6. The precipitation is projected to decrease in the entire country for RCP 6.0, while increase in some parts for other RCPs during wet season. The dry season of precipitation is simulated to decrease by −12 to −93%, which indicated a drier climate for the country in the future.</description><identifier>ISSN: 1994-2060</identifier><identifier>ISSN: 1997-003X</identifier><identifier>EISSN: 1997-003X</identifier><identifier>DOI: 10.1080/19942060.2019.1683076</identifier><language>eng</language><publisher>Hong Kong: Taylor &amp; Francis</publisher><subject>Annual precipitation ; Climate change ; Climate models ; Decision analysis ; Decision trees ; Dry season ; general circulation model ; General circulation models ; Geoteknik ; Mapping ; Multiple criterion ; Precipitation ; precipitation projection ; Rainy season ; random forest ; Soil Mechanics ; symmetrical uncertainty ; Syria</subject><ispartof>Engineering applications of computational fluid mechanics, 2020-01, Vol.14 (1), p.90-106</ispartof><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053</citedby><cites>FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053</cites><orcidid>0000-0001-9621-6452 ; 0000-0002-6748-4703 ; 0000-0003-3647-7137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19942060.2019.1683076$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19942060.2019.1683076$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27502,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76647$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Homsi, Rajab</creatorcontrib><creatorcontrib>Shiru, Mohammed Sanusi</creatorcontrib><creatorcontrib>Shahid, Shamsuddin</creatorcontrib><creatorcontrib>Ismail, Tarmizi</creatorcontrib><creatorcontrib>Harun, Sobri Bin</creatorcontrib><creatorcontrib>Al-Ansari, Nadhir</creatorcontrib><creatorcontrib>Chau, Kwok-Wing</creatorcontrib><creatorcontrib>Yaseen, Zaher Mundher</creatorcontrib><title>Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria</title><title>Engineering applications of computational fluid mechanics</title><description>The possible changes in precipitation of Syrian due to climate change are projected in this study. The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to identify the best general circulation models (GCMs) for precipitation projections. The effectiveness of four bias correction methods, linear scaling (LS), power transformation (PT), general quantile mapping (GEQM), and gamma quantile mapping (GAQM) is assessed in downscaling GCM simulated precipitation. A random forest (RF) model is performed to generate the multi model ensemble (MME) of precipitation projections for four representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5. The results showed that the best suited GCMs for climate projection of Syria are HadGEM2-AO, CSIRO-Mk3-6-0, NorESM1-M, and CESM1-CAM5. The LS demonstrated the highest capability for precipitation downscaling. Annual changes in precipitation is projected to decrease by −30 to −85.2% for RCPs 4.5, 6.0, and 8.5, while by &lt; 0.0 to −30% for RCP 2.6. The precipitation is projected to decrease in the entire country for RCP 6.0, while increase in some parts for other RCPs during wet season. The dry season of precipitation is simulated to decrease by −12 to −93%, which indicated a drier climate for the country in the future.</description><subject>Annual precipitation</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Dry season</subject><subject>general circulation model</subject><subject>General circulation models</subject><subject>Geoteknik</subject><subject>Mapping</subject><subject>Multiple criterion</subject><subject>Precipitation</subject><subject>precipitation projection</subject><subject>Rainy season</subject><subject>random forest</subject><subject>Soil Mechanics</subject><subject>symmetrical uncertainty</subject><subject>Syria</subject><issn>1994-2060</issn><issn>1997-003X</issn><issn>1997-003X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhk1oICHJTwgYeq03kiXro6eGbT4WEhpIG3ooCFkaLVq81layE_bfR7tOA7n0pGH0zMMwb1GcYzTDSKALLCWtEUOzGmE5w0wQxNlBcZz7vEKI_P60r2m1g46Ks5R8ixrECcacHhd_HiIYv_GDHnzoy00MKzD7cky-X5a6nN8vHpryZn5fQp9g3XZQroOF7mv-i7DMqO5K3z9DGvxysgRXPm6j16fFodNdgrO396T4dX31c35b3f24Wcwv7ypDhRgqUuO8jeOMIyEd1lRgKywQR2pLndOSA3AQbU0YrbEgpuGSsdoYK6XgqCEnxWLy2qBXahP9WsetCtqrfSPEpdJx8KYDhS1jzAJ13DbUYCLAGtFQQixpWmdNdn2ZXOkFNmP7wfbdP13ubd0wKs4Y5Rn_POH5cn_HfAO1CmPMJ0mqpnlJJLGkmWomysSQUgT3rsVI7WJU_2JUuxjVW4x57ts053sX4lq_hNhZNehtF6KLujc-KfJ_xSv-uKKz</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Homsi, Rajab</creator><creator>Shiru, Mohammed Sanusi</creator><creator>Shahid, Shamsuddin</creator><creator>Ismail, Tarmizi</creator><creator>Harun, Sobri Bin</creator><creator>Al-Ansari, Nadhir</creator><creator>Chau, Kwok-Wing</creator><creator>Yaseen, Zaher Mundher</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KR7</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9621-6452</orcidid><orcidid>https://orcid.org/0000-0002-6748-4703</orcidid><orcidid>https://orcid.org/0000-0003-3647-7137</orcidid></search><sort><creationdate>20200101</creationdate><title>Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria</title><author>Homsi, Rajab ; Shiru, Mohammed Sanusi ; Shahid, Shamsuddin ; Ismail, Tarmizi ; Harun, Sobri Bin ; Al-Ansari, Nadhir ; Chau, Kwok-Wing ; Yaseen, Zaher Mundher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annual precipitation</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Dry season</topic><topic>general circulation model</topic><topic>General circulation models</topic><topic>Geoteknik</topic><topic>Mapping</topic><topic>Multiple criterion</topic><topic>Precipitation</topic><topic>precipitation projection</topic><topic>Rainy season</topic><topic>random forest</topic><topic>Soil Mechanics</topic><topic>symmetrical uncertainty</topic><topic>Syria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homsi, Rajab</creatorcontrib><creatorcontrib>Shiru, Mohammed Sanusi</creatorcontrib><creatorcontrib>Shahid, Shamsuddin</creatorcontrib><creatorcontrib>Ismail, Tarmizi</creatorcontrib><creatorcontrib>Harun, Sobri Bin</creatorcontrib><creatorcontrib>Al-Ansari, Nadhir</creatorcontrib><creatorcontrib>Chau, Kwok-Wing</creatorcontrib><creatorcontrib>Yaseen, Zaher Mundher</creatorcontrib><collection>Taylor &amp; Francis Open Access(OpenAccess)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Civil Engineering Abstracts</collection><collection>Research Library (ProQuest Database)</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>Directory of Open Access Journals</collection><jtitle>Engineering applications of computational fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Homsi, Rajab</au><au>Shiru, Mohammed Sanusi</au><au>Shahid, Shamsuddin</au><au>Ismail, Tarmizi</au><au>Harun, Sobri Bin</au><au>Al-Ansari, Nadhir</au><au>Chau, Kwok-Wing</au><au>Yaseen, Zaher Mundher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria</atitle><jtitle>Engineering applications of computational fluid mechanics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>90</spage><epage>106</epage><pages>90-106</pages><issn>1994-2060</issn><issn>1997-003X</issn><eissn>1997-003X</eissn><abstract>The possible changes in precipitation of Syrian due to climate change are projected in this study. The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to identify the best general circulation models (GCMs) for precipitation projections. The effectiveness of four bias correction methods, linear scaling (LS), power transformation (PT), general quantile mapping (GEQM), and gamma quantile mapping (GAQM) is assessed in downscaling GCM simulated precipitation. A random forest (RF) model is performed to generate the multi model ensemble (MME) of precipitation projections for four representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5. The results showed that the best suited GCMs for climate projection of Syria are HadGEM2-AO, CSIRO-Mk3-6-0, NorESM1-M, and CESM1-CAM5. The LS demonstrated the highest capability for precipitation downscaling. Annual changes in precipitation is projected to decrease by −30 to −85.2% for RCPs 4.5, 6.0, and 8.5, while by &lt; 0.0 to −30% for RCP 2.6. The precipitation is projected to decrease in the entire country for RCP 6.0, while increase in some parts for other RCPs during wet season. The dry season of precipitation is simulated to decrease by −12 to −93%, which indicated a drier climate for the country in the future.</abstract><cop>Hong Kong</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/19942060.2019.1683076</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9621-6452</orcidid><orcidid>https://orcid.org/0000-0002-6748-4703</orcidid><orcidid>https://orcid.org/0000-0003-3647-7137</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-2060
ispartof Engineering applications of computational fluid mechanics, 2020-01, Vol.14 (1), p.90-106
issn 1994-2060
1997-003X
1997-003X
language eng
recordid cdi_crossref_primary_10_1080_19942060_2019_1683076
source Taylor & Francis Open Access(OpenAccess)
subjects Annual precipitation
Climate change
Climate models
Decision analysis
Decision trees
Dry season
general circulation model
General circulation models
Geoteknik
Mapping
Multiple criterion
Precipitation
precipitation projection
Rainy season
random forest
Soil Mechanics
symmetrical uncertainty
Syria
title Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precipitation%20projection%20using%20a%20CMIP5%20GCM%20ensemble%20model:%20a%20regional%20investigation%20of%20Syria&rft.jtitle=Engineering%20applications%20of%20computational%20fluid%20mechanics&rft.au=Homsi,%20Rajab&rft.date=2020-01-01&rft.volume=14&rft.issue=1&rft.spage=90&rft.epage=106&rft.pages=90-106&rft.issn=1994-2060&rft.eissn=1997-003X&rft_id=info:doi/10.1080/19942060.2019.1683076&rft_dat=%3Cproquest_cross%3E2466209194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466209194&rft_id=info:pmid/&rfr_iscdi=true