Loading…
Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria
The possible changes in precipitation of Syrian due to climate change are projected in this study. The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to identify the best general circulation models (GCMs) for precipitation projections. The effectiveness of...
Saved in:
Published in: | Engineering applications of computational fluid mechanics 2020-01, Vol.14 (1), p.90-106 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053 |
container_end_page | 106 |
container_issue | 1 |
container_start_page | 90 |
container_title | Engineering applications of computational fluid mechanics |
container_volume | 14 |
creator | Homsi, Rajab Shiru, Mohammed Sanusi Shahid, Shamsuddin Ismail, Tarmizi Harun, Sobri Bin Al-Ansari, Nadhir Chau, Kwok-Wing Yaseen, Zaher Mundher |
description | The possible changes in precipitation of Syrian due to climate change are projected in this study. The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to identify the best general circulation models (GCMs) for precipitation projections. The effectiveness of four bias correction methods, linear scaling (LS), power transformation (PT), general quantile mapping (GEQM), and gamma quantile mapping (GAQM) is assessed in downscaling GCM simulated precipitation. A random forest (RF) model is performed to generate the multi model ensemble (MME) of precipitation projections for four representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5. The results showed that the best suited GCMs for climate projection of Syria are HadGEM2-AO, CSIRO-Mk3-6-0, NorESM1-M, and CESM1-CAM5. The LS demonstrated the highest capability for precipitation downscaling. Annual changes in precipitation is projected to decrease by −30 to −85.2% for RCPs 4.5, 6.0, and 8.5, while by < 0.0 to −30% for RCP 2.6. The precipitation is projected to decrease in the entire country for RCP 6.0, while increase in some parts for other RCPs during wet season. The dry season of precipitation is simulated to decrease by −12 to −93%, which indicated a drier climate for the country in the future. |
doi_str_mv | 10.1080/19942060.2019.1683076 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_19942060_2019_1683076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1d666de4f7d54c138edc85433d35bfdc</doaj_id><sourcerecordid>2466209194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1oICHJTwgYeq03kiXro6eGbT4WEhpIG3ooCFkaLVq81layE_bfR7tOA7n0pGH0zMMwb1GcYzTDSKALLCWtEUOzGmE5w0wQxNlBcZz7vEKI_P60r2m1g46Ks5R8ixrECcacHhd_HiIYv_GDHnzoy00MKzD7cky-X5a6nN8vHpryZn5fQp9g3XZQroOF7mv-i7DMqO5K3z9DGvxysgRXPm6j16fFodNdgrO396T4dX31c35b3f24Wcwv7ypDhRgqUuO8jeOMIyEd1lRgKywQR2pLndOSA3AQbU0YrbEgpuGSsdoYK6XgqCEnxWLy2qBXahP9WsetCtqrfSPEpdJx8KYDhS1jzAJ13DbUYCLAGtFQQixpWmdNdn2ZXOkFNmP7wfbdP13ubd0wKs4Y5Rn_POH5cn_HfAO1CmPMJ0mqpnlJJLGkmWomysSQUgT3rsVI7WJU_2JUuxjVW4x57ts053sX4lq_hNhZNehtF6KLujc-KfJ_xSv-uKKz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466209194</pqid></control><display><type>article</type><title>Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria</title><source>Taylor & Francis Open Access(OpenAccess)</source><creator>Homsi, Rajab ; Shiru, Mohammed Sanusi ; Shahid, Shamsuddin ; Ismail, Tarmizi ; Harun, Sobri Bin ; Al-Ansari, Nadhir ; Chau, Kwok-Wing ; Yaseen, Zaher Mundher</creator><creatorcontrib>Homsi, Rajab ; Shiru, Mohammed Sanusi ; Shahid, Shamsuddin ; Ismail, Tarmizi ; Harun, Sobri Bin ; Al-Ansari, Nadhir ; Chau, Kwok-Wing ; Yaseen, Zaher Mundher</creatorcontrib><description>The possible changes in precipitation of Syrian due to climate change are projected in this study. The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to identify the best general circulation models (GCMs) for precipitation projections. The effectiveness of four bias correction methods, linear scaling (LS), power transformation (PT), general quantile mapping (GEQM), and gamma quantile mapping (GAQM) is assessed in downscaling GCM simulated precipitation. A random forest (RF) model is performed to generate the multi model ensemble (MME) of precipitation projections for four representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5. The results showed that the best suited GCMs for climate projection of Syria are HadGEM2-AO, CSIRO-Mk3-6-0, NorESM1-M, and CESM1-CAM5. The LS demonstrated the highest capability for precipitation downscaling. Annual changes in precipitation is projected to decrease by −30 to −85.2% for RCPs 4.5, 6.0, and 8.5, while by < 0.0 to −30% for RCP 2.6. The precipitation is projected to decrease in the entire country for RCP 6.0, while increase in some parts for other RCPs during wet season. The dry season of precipitation is simulated to decrease by −12 to −93%, which indicated a drier climate for the country in the future.</description><identifier>ISSN: 1994-2060</identifier><identifier>ISSN: 1997-003X</identifier><identifier>EISSN: 1997-003X</identifier><identifier>DOI: 10.1080/19942060.2019.1683076</identifier><language>eng</language><publisher>Hong Kong: Taylor & Francis</publisher><subject>Annual precipitation ; Climate change ; Climate models ; Decision analysis ; Decision trees ; Dry season ; general circulation model ; General circulation models ; Geoteknik ; Mapping ; Multiple criterion ; Precipitation ; precipitation projection ; Rainy season ; random forest ; Soil Mechanics ; symmetrical uncertainty ; Syria</subject><ispartof>Engineering applications of computational fluid mechanics, 2020-01, Vol.14 (1), p.90-106</ispartof><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053</citedby><cites>FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053</cites><orcidid>0000-0001-9621-6452 ; 0000-0002-6748-4703 ; 0000-0003-3647-7137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19942060.2019.1683076$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19942060.2019.1683076$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27502,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76647$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Homsi, Rajab</creatorcontrib><creatorcontrib>Shiru, Mohammed Sanusi</creatorcontrib><creatorcontrib>Shahid, Shamsuddin</creatorcontrib><creatorcontrib>Ismail, Tarmizi</creatorcontrib><creatorcontrib>Harun, Sobri Bin</creatorcontrib><creatorcontrib>Al-Ansari, Nadhir</creatorcontrib><creatorcontrib>Chau, Kwok-Wing</creatorcontrib><creatorcontrib>Yaseen, Zaher Mundher</creatorcontrib><title>Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria</title><title>Engineering applications of computational fluid mechanics</title><description>The possible changes in precipitation of Syrian due to climate change are projected in this study. The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to identify the best general circulation models (GCMs) for precipitation projections. The effectiveness of four bias correction methods, linear scaling (LS), power transformation (PT), general quantile mapping (GEQM), and gamma quantile mapping (GAQM) is assessed in downscaling GCM simulated precipitation. A random forest (RF) model is performed to generate the multi model ensemble (MME) of precipitation projections for four representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5. The results showed that the best suited GCMs for climate projection of Syria are HadGEM2-AO, CSIRO-Mk3-6-0, NorESM1-M, and CESM1-CAM5. The LS demonstrated the highest capability for precipitation downscaling. Annual changes in precipitation is projected to decrease by −30 to −85.2% for RCPs 4.5, 6.0, and 8.5, while by < 0.0 to −30% for RCP 2.6. The precipitation is projected to decrease in the entire country for RCP 6.0, while increase in some parts for other RCPs during wet season. The dry season of precipitation is simulated to decrease by −12 to −93%, which indicated a drier climate for the country in the future.</description><subject>Annual precipitation</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Dry season</subject><subject>general circulation model</subject><subject>General circulation models</subject><subject>Geoteknik</subject><subject>Mapping</subject><subject>Multiple criterion</subject><subject>Precipitation</subject><subject>precipitation projection</subject><subject>Rainy season</subject><subject>random forest</subject><subject>Soil Mechanics</subject><subject>symmetrical uncertainty</subject><subject>Syria</subject><issn>1994-2060</issn><issn>1997-003X</issn><issn>1997-003X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhk1oICHJTwgYeq03kiXro6eGbT4WEhpIG3ooCFkaLVq81layE_bfR7tOA7n0pGH0zMMwb1GcYzTDSKALLCWtEUOzGmE5w0wQxNlBcZz7vEKI_P60r2m1g46Ks5R8ixrECcacHhd_HiIYv_GDHnzoy00MKzD7cky-X5a6nN8vHpryZn5fQp9g3XZQroOF7mv-i7DMqO5K3z9DGvxysgRXPm6j16fFodNdgrO396T4dX31c35b3f24Wcwv7ypDhRgqUuO8jeOMIyEd1lRgKywQR2pLndOSA3AQbU0YrbEgpuGSsdoYK6XgqCEnxWLy2qBXahP9WsetCtqrfSPEpdJx8KYDhS1jzAJ13DbUYCLAGtFQQixpWmdNdn2ZXOkFNmP7wfbdP13ubd0wKs4Y5Rn_POH5cn_HfAO1CmPMJ0mqpnlJJLGkmWomysSQUgT3rsVI7WJU_2JUuxjVW4x57ts053sX4lq_hNhZNehtF6KLujc-KfJ_xSv-uKKz</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Homsi, Rajab</creator><creator>Shiru, Mohammed Sanusi</creator><creator>Shahid, Shamsuddin</creator><creator>Ismail, Tarmizi</creator><creator>Harun, Sobri Bin</creator><creator>Al-Ansari, Nadhir</creator><creator>Chau, Kwok-Wing</creator><creator>Yaseen, Zaher Mundher</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KR7</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9621-6452</orcidid><orcidid>https://orcid.org/0000-0002-6748-4703</orcidid><orcidid>https://orcid.org/0000-0003-3647-7137</orcidid></search><sort><creationdate>20200101</creationdate><title>Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria</title><author>Homsi, Rajab ; Shiru, Mohammed Sanusi ; Shahid, Shamsuddin ; Ismail, Tarmizi ; Harun, Sobri Bin ; Al-Ansari, Nadhir ; Chau, Kwok-Wing ; Yaseen, Zaher Mundher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annual precipitation</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Dry season</topic><topic>general circulation model</topic><topic>General circulation models</topic><topic>Geoteknik</topic><topic>Mapping</topic><topic>Multiple criterion</topic><topic>Precipitation</topic><topic>precipitation projection</topic><topic>Rainy season</topic><topic>random forest</topic><topic>Soil Mechanics</topic><topic>symmetrical uncertainty</topic><topic>Syria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homsi, Rajab</creatorcontrib><creatorcontrib>Shiru, Mohammed Sanusi</creatorcontrib><creatorcontrib>Shahid, Shamsuddin</creatorcontrib><creatorcontrib>Ismail, Tarmizi</creatorcontrib><creatorcontrib>Harun, Sobri Bin</creatorcontrib><creatorcontrib>Al-Ansari, Nadhir</creatorcontrib><creatorcontrib>Chau, Kwok-Wing</creatorcontrib><creatorcontrib>Yaseen, Zaher Mundher</creatorcontrib><collection>Taylor & Francis Open Access(OpenAccess)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Civil Engineering Abstracts</collection><collection>Research Library (ProQuest Database)</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>Directory of Open Access Journals</collection><jtitle>Engineering applications of computational fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Homsi, Rajab</au><au>Shiru, Mohammed Sanusi</au><au>Shahid, Shamsuddin</au><au>Ismail, Tarmizi</au><au>Harun, Sobri Bin</au><au>Al-Ansari, Nadhir</au><au>Chau, Kwok-Wing</au><au>Yaseen, Zaher Mundher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria</atitle><jtitle>Engineering applications of computational fluid mechanics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>90</spage><epage>106</epage><pages>90-106</pages><issn>1994-2060</issn><issn>1997-003X</issn><eissn>1997-003X</eissn><abstract>The possible changes in precipitation of Syrian due to climate change are projected in this study. The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to identify the best general circulation models (GCMs) for precipitation projections. The effectiveness of four bias correction methods, linear scaling (LS), power transformation (PT), general quantile mapping (GEQM), and gamma quantile mapping (GAQM) is assessed in downscaling GCM simulated precipitation. A random forest (RF) model is performed to generate the multi model ensemble (MME) of precipitation projections for four representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5. The results showed that the best suited GCMs for climate projection of Syria are HadGEM2-AO, CSIRO-Mk3-6-0, NorESM1-M, and CESM1-CAM5. The LS demonstrated the highest capability for precipitation downscaling. Annual changes in precipitation is projected to decrease by −30 to −85.2% for RCPs 4.5, 6.0, and 8.5, while by < 0.0 to −30% for RCP 2.6. The precipitation is projected to decrease in the entire country for RCP 6.0, while increase in some parts for other RCPs during wet season. The dry season of precipitation is simulated to decrease by −12 to −93%, which indicated a drier climate for the country in the future.</abstract><cop>Hong Kong</cop><pub>Taylor & Francis</pub><doi>10.1080/19942060.2019.1683076</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9621-6452</orcidid><orcidid>https://orcid.org/0000-0002-6748-4703</orcidid><orcidid>https://orcid.org/0000-0003-3647-7137</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1994-2060 |
ispartof | Engineering applications of computational fluid mechanics, 2020-01, Vol.14 (1), p.90-106 |
issn | 1994-2060 1997-003X 1997-003X |
language | eng |
recordid | cdi_crossref_primary_10_1080_19942060_2019_1683076 |
source | Taylor & Francis Open Access(OpenAccess) |
subjects | Annual precipitation Climate change Climate models Decision analysis Decision trees Dry season general circulation model General circulation models Geoteknik Mapping Multiple criterion Precipitation precipitation projection Rainy season random forest Soil Mechanics symmetrical uncertainty Syria |
title | Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precipitation%20projection%20using%20a%20CMIP5%20GCM%20ensemble%20model:%20a%20regional%20investigation%20of%20Syria&rft.jtitle=Engineering%20applications%20of%20computational%20fluid%20mechanics&rft.au=Homsi,%20Rajab&rft.date=2020-01-01&rft.volume=14&rft.issue=1&rft.spage=90&rft.epage=106&rft.pages=90-106&rft.issn=1994-2060&rft.eissn=1997-003X&rft_id=info:doi/10.1080/19942060.2019.1683076&rft_dat=%3Cproquest_cross%3E2466209194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-321311f767089f1a481d8de3f32d4ffa97ee7e8b23642183c579662ccd9987053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466209194&rft_id=info:pmid/&rfr_iscdi=true |