Loading…

Forecast of rainfall distribution based on fixed sliding window long short-term memory

Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting m...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of computational fluid mechanics 2022-12, Vol.16 (1), p.248-261
Main Authors: Chen, Chengcheng, Zhang, Qian, Kashani, Mahsa H., Jun, Changhyun, Bateni, Sayed M., Band, Shahab S., Dash, Sonam Sandeep, Chau, Kwok-Wing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623
cites cdi_FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623
container_end_page 261
container_issue 1
container_start_page 248
container_title Engineering applications of computational fluid mechanics
container_volume 16
creator Chen, Chengcheng
Zhang, Qian
Kashani, Mahsa H.
Jun, Changhyun
Bateni, Sayed M.
Band, Shahab S.
Dash, Sonam Sandeep
Chau, Kwok-Wing
description Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting monthly rainfall data, and its capability is compared with a random forest (RF) data-driven model. To this end, monthly rainfall data for a period of 41 years (1980-2020) from two meteorological stations in Turkey, namely Rize and Konya, with different climatic conditions, are used. The analysis is carried out using optimum window sizes for determining the optimum lag times of rainfall time series. The performance of the models is evaluated using five statistical measures, namely root mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Legate and McCabe's index (LMI), correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE), and also using two visual means, namely Taylor and violin diagrams. The results reveal that the LSTM model, as a more efficient tool, outperforms the RF model in forecasting rainfall at both stations, with improved RMSE of 12.2-14.9%, RSR of 12.3-14.8%, R of 9.4-13.5% and NSE of 32.9-33.2%. The LSTM-based approach proposed herein could be adopted over any global climatic conditions to forecast the monthly rainfall with reasonable accuracy.
doi_str_mv 10.1080/19942060.2021.2009374
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_19942060_2021_2009374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aded4340510e4f2e95f67795cb42fda9</doaj_id><sourcerecordid>2764767037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623</originalsourceid><addsrcrecordid>eNp9kUtrFUEQhQdRMMT8BGHA9cTq9_ROCUYDATcq7pp-xg4z07G6L9f779M3N7p0U3UoTn1d9BmGtwQuCczwnmjNKUi4pEBJL6CZ4i-Gsz5XEwD7-fJJ8-loej1c1JodCFCMEMXPhh_XBaO3tY0ljWjzluyyjCHXhtntWi7b6GyNYewi5T9d1CWHvN2N-7yFsh-X0nX9VbBNLeI6rnEteHgzvOqgGi-e-_nw_frTt6sv0-3XzzdXH28nzwVpE7MRNEn9NCG91AmcIrNMlMh5lrPTaqbMJxfA0SgUlUHaAN6C4MIyJyk7H25O3FDsvXnAvFo8mGKzeRoUvDMWW_ZLNDbEwBkHQSDyRKMWSSqlhXecpmB1Z707sR6w_N7F2sx92eHWzzdUSa6kAqa6S5xcHkutGNO_VwmYYyLmbyLmmIh5TqTvfTjt9S8uuNp9wSWYZg9LwYR287ka9n_EIx_kkbU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764767037</pqid></control><display><type>article</type><title>Forecast of rainfall distribution based on fixed sliding window long short-term memory</title><source>Taylor &amp; Francis Open Access(OpenAccess)</source><creator>Chen, Chengcheng ; Zhang, Qian ; Kashani, Mahsa H. ; Jun, Changhyun ; Bateni, Sayed M. ; Band, Shahab S. ; Dash, Sonam Sandeep ; Chau, Kwok-Wing</creator><creatorcontrib>Chen, Chengcheng ; Zhang, Qian ; Kashani, Mahsa H. ; Jun, Changhyun ; Bateni, Sayed M. ; Band, Shahab S. ; Dash, Sonam Sandeep ; Chau, Kwok-Wing</creatorcontrib><description>Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting monthly rainfall data, and its capability is compared with a random forest (RF) data-driven model. To this end, monthly rainfall data for a period of 41 years (1980-2020) from two meteorological stations in Turkey, namely Rize and Konya, with different climatic conditions, are used. The analysis is carried out using optimum window sizes for determining the optimum lag times of rainfall time series. The performance of the models is evaluated using five statistical measures, namely root mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Legate and McCabe's index (LMI), correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE), and also using two visual means, namely Taylor and violin diagrams. The results reveal that the LSTM model, as a more efficient tool, outperforms the RF model in forecasting rainfall at both stations, with improved RMSE of 12.2-14.9%, RSR of 12.3-14.8%, R of 9.4-13.5% and NSE of 32.9-33.2%. The LSTM-based approach proposed herein could be adopted over any global climatic conditions to forecast the monthly rainfall with reasonable accuracy.</description><identifier>ISSN: 1994-2060</identifier><identifier>EISSN: 1997-003X</identifier><identifier>DOI: 10.1080/19942060.2021.2009374</identifier><language>eng</language><publisher>Hong Kong: Taylor &amp; Francis</publisher><subject>Correlation coefficients ; Data mining ; Deep learning ; Error analysis ; Forecasting ; long short-term memory ; Mathematical models ; Meteorological satellites ; Rain ; Rainfall ; random forest ; Root-mean-square errors ; Turkey ; Weather stations</subject><ispartof>Engineering applications of computational fluid mechanics, 2022-12, Vol.16 (1), p.248-261</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623</citedby><cites>FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623</cites><orcidid>0000-0001-6109-1311 ; 0000-0002-7134-0067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19942060.2021.2009374$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19942060.2021.2009374$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Chen, Chengcheng</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Kashani, Mahsa H.</creatorcontrib><creatorcontrib>Jun, Changhyun</creatorcontrib><creatorcontrib>Bateni, Sayed M.</creatorcontrib><creatorcontrib>Band, Shahab S.</creatorcontrib><creatorcontrib>Dash, Sonam Sandeep</creatorcontrib><creatorcontrib>Chau, Kwok-Wing</creatorcontrib><title>Forecast of rainfall distribution based on fixed sliding window long short-term memory</title><title>Engineering applications of computational fluid mechanics</title><description>Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting monthly rainfall data, and its capability is compared with a random forest (RF) data-driven model. To this end, monthly rainfall data for a period of 41 years (1980-2020) from two meteorological stations in Turkey, namely Rize and Konya, with different climatic conditions, are used. The analysis is carried out using optimum window sizes for determining the optimum lag times of rainfall time series. The performance of the models is evaluated using five statistical measures, namely root mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Legate and McCabe's index (LMI), correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE), and also using two visual means, namely Taylor and violin diagrams. The results reveal that the LSTM model, as a more efficient tool, outperforms the RF model in forecasting rainfall at both stations, with improved RMSE of 12.2-14.9%, RSR of 12.3-14.8%, R of 9.4-13.5% and NSE of 32.9-33.2%. The LSTM-based approach proposed herein could be adopted over any global climatic conditions to forecast the monthly rainfall with reasonable accuracy.</description><subject>Correlation coefficients</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Error analysis</subject><subject>Forecasting</subject><subject>long short-term memory</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Rain</subject><subject>Rainfall</subject><subject>random forest</subject><subject>Root-mean-square errors</subject><subject>Turkey</subject><subject>Weather stations</subject><issn>1994-2060</issn><issn>1997-003X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtrFUEQhQdRMMT8BGHA9cTq9_ROCUYDATcq7pp-xg4z07G6L9f779M3N7p0U3UoTn1d9BmGtwQuCczwnmjNKUi4pEBJL6CZ4i-Gsz5XEwD7-fJJ8-loej1c1JodCFCMEMXPhh_XBaO3tY0ljWjzluyyjCHXhtntWi7b6GyNYewi5T9d1CWHvN2N-7yFsh-X0nX9VbBNLeI6rnEteHgzvOqgGi-e-_nw_frTt6sv0-3XzzdXH28nzwVpE7MRNEn9NCG91AmcIrNMlMh5lrPTaqbMJxfA0SgUlUHaAN6C4MIyJyk7H25O3FDsvXnAvFo8mGKzeRoUvDMWW_ZLNDbEwBkHQSDyRKMWSSqlhXecpmB1Z707sR6w_N7F2sx92eHWzzdUSa6kAqa6S5xcHkutGNO_VwmYYyLmbyLmmIh5TqTvfTjt9S8uuNp9wSWYZg9LwYR287ka9n_EIx_kkbU</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Chen, Chengcheng</creator><creator>Zhang, Qian</creator><creator>Kashani, Mahsa H.</creator><creator>Jun, Changhyun</creator><creator>Bateni, Sayed M.</creator><creator>Band, Shahab S.</creator><creator>Dash, Sonam Sandeep</creator><creator>Chau, Kwok-Wing</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KR7</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6109-1311</orcidid><orcidid>https://orcid.org/0000-0002-7134-0067</orcidid></search><sort><creationdate>20221231</creationdate><title>Forecast of rainfall distribution based on fixed sliding window long short-term memory</title><author>Chen, Chengcheng ; Zhang, Qian ; Kashani, Mahsa H. ; Jun, Changhyun ; Bateni, Sayed M. ; Band, Shahab S. ; Dash, Sonam Sandeep ; Chau, Kwok-Wing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Correlation coefficients</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Error analysis</topic><topic>Forecasting</topic><topic>long short-term memory</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Rain</topic><topic>Rainfall</topic><topic>random forest</topic><topic>Root-mean-square errors</topic><topic>Turkey</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chengcheng</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Kashani, Mahsa H.</creatorcontrib><creatorcontrib>Jun, Changhyun</creatorcontrib><creatorcontrib>Bateni, Sayed M.</creatorcontrib><creatorcontrib>Band, Shahab S.</creatorcontrib><creatorcontrib>Dash, Sonam Sandeep</creatorcontrib><creatorcontrib>Chau, Kwok-Wing</creatorcontrib><collection>Taylor &amp; Francis Open Access(OpenAccess)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Engineering applications of computational fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chengcheng</au><au>Zhang, Qian</au><au>Kashani, Mahsa H.</au><au>Jun, Changhyun</au><au>Bateni, Sayed M.</au><au>Band, Shahab S.</au><au>Dash, Sonam Sandeep</au><au>Chau, Kwok-Wing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecast of rainfall distribution based on fixed sliding window long short-term memory</atitle><jtitle>Engineering applications of computational fluid mechanics</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>248</spage><epage>261</epage><pages>248-261</pages><issn>1994-2060</issn><eissn>1997-003X</eissn><abstract>Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting monthly rainfall data, and its capability is compared with a random forest (RF) data-driven model. To this end, monthly rainfall data for a period of 41 years (1980-2020) from two meteorological stations in Turkey, namely Rize and Konya, with different climatic conditions, are used. The analysis is carried out using optimum window sizes for determining the optimum lag times of rainfall time series. The performance of the models is evaluated using five statistical measures, namely root mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Legate and McCabe's index (LMI), correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE), and also using two visual means, namely Taylor and violin diagrams. The results reveal that the LSTM model, as a more efficient tool, outperforms the RF model in forecasting rainfall at both stations, with improved RMSE of 12.2-14.9%, RSR of 12.3-14.8%, R of 9.4-13.5% and NSE of 32.9-33.2%. The LSTM-based approach proposed herein could be adopted over any global climatic conditions to forecast the monthly rainfall with reasonable accuracy.</abstract><cop>Hong Kong</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/19942060.2021.2009374</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6109-1311</orcidid><orcidid>https://orcid.org/0000-0002-7134-0067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-2060
ispartof Engineering applications of computational fluid mechanics, 2022-12, Vol.16 (1), p.248-261
issn 1994-2060
1997-003X
language eng
recordid cdi_crossref_primary_10_1080_19942060_2021_2009374
source Taylor & Francis Open Access(OpenAccess)
subjects Correlation coefficients
Data mining
Deep learning
Error analysis
Forecasting
long short-term memory
Mathematical models
Meteorological satellites
Rain
Rainfall
random forest
Root-mean-square errors
Turkey
Weather stations
title Forecast of rainfall distribution based on fixed sliding window long short-term memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecast%20of%20rainfall%20distribution%20based%20on%20fixed%20sliding%20window%20long%20short-term%20memory&rft.jtitle=Engineering%20applications%20of%20computational%20fluid%20mechanics&rft.au=Chen,%20Chengcheng&rft.date=2022-12-31&rft.volume=16&rft.issue=1&rft.spage=248&rft.epage=261&rft.pages=248-261&rft.issn=1994-2060&rft.eissn=1997-003X&rft_id=info:doi/10.1080/19942060.2021.2009374&rft_dat=%3Cproquest_cross%3E2764767037%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2764767037&rft_id=info:pmid/&rfr_iscdi=true