Loading…
Forecast of rainfall distribution based on fixed sliding window long short-term memory
Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting m...
Saved in:
Published in: | Engineering applications of computational fluid mechanics 2022-12, Vol.16 (1), p.248-261 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623 |
container_end_page | 261 |
container_issue | 1 |
container_start_page | 248 |
container_title | Engineering applications of computational fluid mechanics |
container_volume | 16 |
creator | Chen, Chengcheng Zhang, Qian Kashani, Mahsa H. Jun, Changhyun Bateni, Sayed M. Band, Shahab S. Dash, Sonam Sandeep Chau, Kwok-Wing |
description | Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting monthly rainfall data, and its capability is compared with a random forest (RF) data-driven model. To this end, monthly rainfall data for a period of 41 years (1980-2020) from two meteorological stations in Turkey, namely Rize and Konya, with different climatic conditions, are used. The analysis is carried out using optimum window sizes for determining the optimum lag times of rainfall time series. The performance of the models is evaluated using five statistical measures, namely root mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Legate and McCabe's index (LMI), correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE), and also using two visual means, namely Taylor and violin diagrams. The results reveal that the LSTM model, as a more efficient tool, outperforms the RF model in forecasting rainfall at both stations, with improved RMSE of 12.2-14.9%, RSR of 12.3-14.8%, R of 9.4-13.5% and NSE of 32.9-33.2%. The LSTM-based approach proposed herein could be adopted over any global climatic conditions to forecast the monthly rainfall with reasonable accuracy. |
doi_str_mv | 10.1080/19942060.2021.2009374 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_19942060_2021_2009374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aded4340510e4f2e95f67795cb42fda9</doaj_id><sourcerecordid>2764767037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623</originalsourceid><addsrcrecordid>eNp9kUtrFUEQhQdRMMT8BGHA9cTq9_ROCUYDATcq7pp-xg4z07G6L9f779M3N7p0U3UoTn1d9BmGtwQuCczwnmjNKUi4pEBJL6CZ4i-Gsz5XEwD7-fJJ8-loej1c1JodCFCMEMXPhh_XBaO3tY0ljWjzluyyjCHXhtntWi7b6GyNYewi5T9d1CWHvN2N-7yFsh-X0nX9VbBNLeI6rnEteHgzvOqgGi-e-_nw_frTt6sv0-3XzzdXH28nzwVpE7MRNEn9NCG91AmcIrNMlMh5lrPTaqbMJxfA0SgUlUHaAN6C4MIyJyk7H25O3FDsvXnAvFo8mGKzeRoUvDMWW_ZLNDbEwBkHQSDyRKMWSSqlhXecpmB1Z707sR6w_N7F2sx92eHWzzdUSa6kAqa6S5xcHkutGNO_VwmYYyLmbyLmmIh5TqTvfTjt9S8uuNp9wSWYZg9LwYR287ka9n_EIx_kkbU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764767037</pqid></control><display><type>article</type><title>Forecast of rainfall distribution based on fixed sliding window long short-term memory</title><source>Taylor & Francis Open Access(OpenAccess)</source><creator>Chen, Chengcheng ; Zhang, Qian ; Kashani, Mahsa H. ; Jun, Changhyun ; Bateni, Sayed M. ; Band, Shahab S. ; Dash, Sonam Sandeep ; Chau, Kwok-Wing</creator><creatorcontrib>Chen, Chengcheng ; Zhang, Qian ; Kashani, Mahsa H. ; Jun, Changhyun ; Bateni, Sayed M. ; Band, Shahab S. ; Dash, Sonam Sandeep ; Chau, Kwok-Wing</creatorcontrib><description>Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting monthly rainfall data, and its capability is compared with a random forest (RF) data-driven model. To this end, monthly rainfall data for a period of 41 years (1980-2020) from two meteorological stations in Turkey, namely Rize and Konya, with different climatic conditions, are used. The analysis is carried out using optimum window sizes for determining the optimum lag times of rainfall time series. The performance of the models is evaluated using five statistical measures, namely root mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Legate and McCabe's index (LMI), correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE), and also using two visual means, namely Taylor and violin diagrams. The results reveal that the LSTM model, as a more efficient tool, outperforms the RF model in forecasting rainfall at both stations, with improved RMSE of 12.2-14.9%, RSR of 12.3-14.8%, R of 9.4-13.5% and NSE of 32.9-33.2%. The LSTM-based approach proposed herein could be adopted over any global climatic conditions to forecast the monthly rainfall with reasonable accuracy.</description><identifier>ISSN: 1994-2060</identifier><identifier>EISSN: 1997-003X</identifier><identifier>DOI: 10.1080/19942060.2021.2009374</identifier><language>eng</language><publisher>Hong Kong: Taylor & Francis</publisher><subject>Correlation coefficients ; Data mining ; Deep learning ; Error analysis ; Forecasting ; long short-term memory ; Mathematical models ; Meteorological satellites ; Rain ; Rainfall ; random forest ; Root-mean-square errors ; Turkey ; Weather stations</subject><ispartof>Engineering applications of computational fluid mechanics, 2022-12, Vol.16 (1), p.248-261</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623</citedby><cites>FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623</cites><orcidid>0000-0001-6109-1311 ; 0000-0002-7134-0067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19942060.2021.2009374$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19942060.2021.2009374$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Chen, Chengcheng</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Kashani, Mahsa H.</creatorcontrib><creatorcontrib>Jun, Changhyun</creatorcontrib><creatorcontrib>Bateni, Sayed M.</creatorcontrib><creatorcontrib>Band, Shahab S.</creatorcontrib><creatorcontrib>Dash, Sonam Sandeep</creatorcontrib><creatorcontrib>Chau, Kwok-Wing</creatorcontrib><title>Forecast of rainfall distribution based on fixed sliding window long short-term memory</title><title>Engineering applications of computational fluid mechanics</title><description>Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting monthly rainfall data, and its capability is compared with a random forest (RF) data-driven model. To this end, monthly rainfall data for a period of 41 years (1980-2020) from two meteorological stations in Turkey, namely Rize and Konya, with different climatic conditions, are used. The analysis is carried out using optimum window sizes for determining the optimum lag times of rainfall time series. The performance of the models is evaluated using five statistical measures, namely root mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Legate and McCabe's index (LMI), correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE), and also using two visual means, namely Taylor and violin diagrams. The results reveal that the LSTM model, as a more efficient tool, outperforms the RF model in forecasting rainfall at both stations, with improved RMSE of 12.2-14.9%, RSR of 12.3-14.8%, R of 9.4-13.5% and NSE of 32.9-33.2%. The LSTM-based approach proposed herein could be adopted over any global climatic conditions to forecast the monthly rainfall with reasonable accuracy.</description><subject>Correlation coefficients</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Error analysis</subject><subject>Forecasting</subject><subject>long short-term memory</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Rain</subject><subject>Rainfall</subject><subject>random forest</subject><subject>Root-mean-square errors</subject><subject>Turkey</subject><subject>Weather stations</subject><issn>1994-2060</issn><issn>1997-003X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtrFUEQhQdRMMT8BGHA9cTq9_ROCUYDATcq7pp-xg4z07G6L9f779M3N7p0U3UoTn1d9BmGtwQuCczwnmjNKUi4pEBJL6CZ4i-Gsz5XEwD7-fJJ8-loej1c1JodCFCMEMXPhh_XBaO3tY0ljWjzluyyjCHXhtntWi7b6GyNYewi5T9d1CWHvN2N-7yFsh-X0nX9VbBNLeI6rnEteHgzvOqgGi-e-_nw_frTt6sv0-3XzzdXH28nzwVpE7MRNEn9NCG91AmcIrNMlMh5lrPTaqbMJxfA0SgUlUHaAN6C4MIyJyk7H25O3FDsvXnAvFo8mGKzeRoUvDMWW_ZLNDbEwBkHQSDyRKMWSSqlhXecpmB1Z707sR6w_N7F2sx92eHWzzdUSa6kAqa6S5xcHkutGNO_VwmYYyLmbyLmmIh5TqTvfTjt9S8uuNp9wSWYZg9LwYR287ka9n_EIx_kkbU</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Chen, Chengcheng</creator><creator>Zhang, Qian</creator><creator>Kashani, Mahsa H.</creator><creator>Jun, Changhyun</creator><creator>Bateni, Sayed M.</creator><creator>Band, Shahab S.</creator><creator>Dash, Sonam Sandeep</creator><creator>Chau, Kwok-Wing</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KR7</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6109-1311</orcidid><orcidid>https://orcid.org/0000-0002-7134-0067</orcidid></search><sort><creationdate>20221231</creationdate><title>Forecast of rainfall distribution based on fixed sliding window long short-term memory</title><author>Chen, Chengcheng ; Zhang, Qian ; Kashani, Mahsa H. ; Jun, Changhyun ; Bateni, Sayed M. ; Band, Shahab S. ; Dash, Sonam Sandeep ; Chau, Kwok-Wing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Correlation coefficients</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Error analysis</topic><topic>Forecasting</topic><topic>long short-term memory</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Rain</topic><topic>Rainfall</topic><topic>random forest</topic><topic>Root-mean-square errors</topic><topic>Turkey</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chengcheng</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Kashani, Mahsa H.</creatorcontrib><creatorcontrib>Jun, Changhyun</creatorcontrib><creatorcontrib>Bateni, Sayed M.</creatorcontrib><creatorcontrib>Band, Shahab S.</creatorcontrib><creatorcontrib>Dash, Sonam Sandeep</creatorcontrib><creatorcontrib>Chau, Kwok-Wing</creatorcontrib><collection>Taylor & Francis Open Access(OpenAccess)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Engineering applications of computational fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chengcheng</au><au>Zhang, Qian</au><au>Kashani, Mahsa H.</au><au>Jun, Changhyun</au><au>Bateni, Sayed M.</au><au>Band, Shahab S.</au><au>Dash, Sonam Sandeep</au><au>Chau, Kwok-Wing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecast of rainfall distribution based on fixed sliding window long short-term memory</atitle><jtitle>Engineering applications of computational fluid mechanics</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>248</spage><epage>261</epage><pages>248-261</pages><issn>1994-2060</issn><eissn>1997-003X</eissn><abstract>Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting monthly rainfall data, and its capability is compared with a random forest (RF) data-driven model. To this end, monthly rainfall data for a period of 41 years (1980-2020) from two meteorological stations in Turkey, namely Rize and Konya, with different climatic conditions, are used. The analysis is carried out using optimum window sizes for determining the optimum lag times of rainfall time series. The performance of the models is evaluated using five statistical measures, namely root mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Legate and McCabe's index (LMI), correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE), and also using two visual means, namely Taylor and violin diagrams. The results reveal that the LSTM model, as a more efficient tool, outperforms the RF model in forecasting rainfall at both stations, with improved RMSE of 12.2-14.9%, RSR of 12.3-14.8%, R of 9.4-13.5% and NSE of 32.9-33.2%. The LSTM-based approach proposed herein could be adopted over any global climatic conditions to forecast the monthly rainfall with reasonable accuracy.</abstract><cop>Hong Kong</cop><pub>Taylor & Francis</pub><doi>10.1080/19942060.2021.2009374</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6109-1311</orcidid><orcidid>https://orcid.org/0000-0002-7134-0067</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1994-2060 |
ispartof | Engineering applications of computational fluid mechanics, 2022-12, Vol.16 (1), p.248-261 |
issn | 1994-2060 1997-003X |
language | eng |
recordid | cdi_crossref_primary_10_1080_19942060_2021_2009374 |
source | Taylor & Francis Open Access(OpenAccess) |
subjects | Correlation coefficients Data mining Deep learning Error analysis Forecasting long short-term memory Mathematical models Meteorological satellites Rain Rainfall random forest Root-mean-square errors Turkey Weather stations |
title | Forecast of rainfall distribution based on fixed sliding window long short-term memory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecast%20of%20rainfall%20distribution%20based%20on%20fixed%20sliding%20window%20long%20short-term%20memory&rft.jtitle=Engineering%20applications%20of%20computational%20fluid%20mechanics&rft.au=Chen,%20Chengcheng&rft.date=2022-12-31&rft.volume=16&rft.issue=1&rft.spage=248&rft.epage=261&rft.pages=248-261&rft.issn=1994-2060&rft.eissn=1997-003X&rft_id=info:doi/10.1080/19942060.2021.2009374&rft_dat=%3Cproquest_cross%3E2764767037%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-3ae091f20656c69f0b7186f2168868b97823cfbd0b2e5726d6ad0ca0545a3b623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2764767037&rft_id=info:pmid/&rfr_iscdi=true |