Loading…

Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake

Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of extracellular vesicles 2020-01, Vol.9 (1), p.n/a
Main Authors: Brenna, Santra, Altmeppen, Hermann C., Mohammadi, Behnam, Rissiek, Björn, Schlink, Florence, Ludewig, Peter, Krisp, Christoph, Schlüter, Hartmut, Failla, Antonio Virgilio, Schneider, Carola, Glatzel, Markus, Puig, Berta, Magnus, Tim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3
cites cdi_FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3
container_end_page n/a
container_issue 1
container_start_page
container_title Journal of extracellular vesicles
container_volume 9
creator Brenna, Santra
Altmeppen, Hermann C.
Mohammadi, Behnam
Rissiek, Björn
Schlink, Florence
Ludewig, Peter
Krisp, Christoph
Schlüter, Hartmut
Failla, Antonio Virgilio
Schneider, Carola
Glatzel, Markus
Puig, Berta
Magnus, Tim
description Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.
doi_str_mv 10.1080/20013078.2020.1809065
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_20013078_2020_1809065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8b3f873bf1d34191be2c0a2b5d004183</doaj_id><sourcerecordid>1010802001307820201809065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3</originalsourceid><addsrcrecordid>eNqNkktvEzEQx1cIRKvSj4BkiXOKn_u4ICBqoagSF-BqzXrHWacbO3idhPC9-H54SSjkgvDFntfvP2NNUTxn9IrRmr7klDJBq_qKU55dNW1oqR4V55N_NgUe__U-Ky7HcUnzaSRTdfO0OBO8kZI18rz4Me8hgkkY3XdILngSLGkjOD_rsm-LHcFvKWfgMGwGiGSLozMDjiTiFmEYienBL7LtPHlICtEtsg02c8mYYrhHAj6jfHSmX6FPk0zqkazjpLmOIWEu2LnUEyDrbPnkYCAxDHhC3qwT3OOz4onN2nh5vC-KzzfXn-bvZ3cf393O39zNjCoZm9WyLisAI0uFpbTIy1YB57QqlURbtRWTnCuVI1UjKEgrK9u0RohKNcq2nbgobg_cLsBS515XEPc6gNO_HCEuNMQ0_YeuW2HrSrSWdSJ_LWuRGwq8VR2lktUis14dWOtNu8LO5AkjDCfQ04h3vV6Era5kTaVqMuDFERDD1w2OSS_DJvo8vxa04UKWpWA5Sx2yTAzjGNE-KDCqp-XRv5dHT8ujj8vzp72dG3D_f0X6w_UX_vaGUs4n4dcHgPM2xBXsQhw6nWA_hGgjeONyn__u4SdQFN8i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092346631</pqid></control><display><type>article</type><title>Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake</title><source>Taylor &amp; Francis</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Brenna, Santra ; Altmeppen, Hermann C. ; Mohammadi, Behnam ; Rissiek, Björn ; Schlink, Florence ; Ludewig, Peter ; Krisp, Christoph ; Schlüter, Hartmut ; Failla, Antonio Virgilio ; Schneider, Carola ; Glatzel, Markus ; Puig, Berta ; Magnus, Tim</creator><creatorcontrib>Brenna, Santra ; Altmeppen, Hermann C. ; Mohammadi, Behnam ; Rissiek, Björn ; Schlink, Florence ; Ludewig, Peter ; Krisp, Christoph ; Schlüter, Hartmut ; Failla, Antonio Virgilio ; Schneider, Carola ; Glatzel, Markus ; Puig, Berta ; Magnus, Tim</creatorcontrib><description>Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.</description><identifier>ISSN: 2001-3078</identifier><identifier>EISSN: 2001-3078</identifier><identifier>DOI: 10.1080/20013078.2020.1809065</identifier><identifier>PMID: 32944194</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Astrocytes ; Brain ; Cell interactions ; Extracellular vesicles ; extracellular vesicles (EVs) ; ischaemia ; Ischemia ; Microglia ; Physiology ; Prion protein ; prion protein (PrP) ; Proteins ; proteolytic processing ; PrP knock-out ; PrP-C1 ; Stroke ; Therapeutic applications ; Veins &amp; arteries</subject><ispartof>Journal of extracellular vesicles, 2020-01, Vol.9 (1), p.n/a</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group on behalf of The International Society for Extracellular Vesicles. 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group on behalf of The International Society for Extracellular Vesicles.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group on behalf of The International Society for Extracellular Vesicles. 2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3</citedby><cites>FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3</cites><orcidid>0000-0002-2255-8393 ; 0000-0001-8233-2110 ; 0000-0001-6232-9555 ; 0000-0001-9439-6533 ; 0000-0001-5327-5479 ; 0000-0002-7720-8817 ; 0000-0002-9358-7036 ; 0000-0002-9178-3949 ; 0000-0002-7137-0506 ; 0000-0001-9025-6402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480459/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480459/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11542,27481,27903,27904,46031,46455,53770,53772,59120,59121</link.rule.ids></links><search><creatorcontrib>Brenna, Santra</creatorcontrib><creatorcontrib>Altmeppen, Hermann C.</creatorcontrib><creatorcontrib>Mohammadi, Behnam</creatorcontrib><creatorcontrib>Rissiek, Björn</creatorcontrib><creatorcontrib>Schlink, Florence</creatorcontrib><creatorcontrib>Ludewig, Peter</creatorcontrib><creatorcontrib>Krisp, Christoph</creatorcontrib><creatorcontrib>Schlüter, Hartmut</creatorcontrib><creatorcontrib>Failla, Antonio Virgilio</creatorcontrib><creatorcontrib>Schneider, Carola</creatorcontrib><creatorcontrib>Glatzel, Markus</creatorcontrib><creatorcontrib>Puig, Berta</creatorcontrib><creatorcontrib>Magnus, Tim</creatorcontrib><title>Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake</title><title>Journal of extracellular vesicles</title><description>Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.</description><subject>Astrocytes</subject><subject>Brain</subject><subject>Cell interactions</subject><subject>Extracellular vesicles</subject><subject>extracellular vesicles (EVs)</subject><subject>ischaemia</subject><subject>Ischemia</subject><subject>Microglia</subject><subject>Physiology</subject><subject>Prion protein</subject><subject>prion protein (PrP)</subject><subject>Proteins</subject><subject>proteolytic processing</subject><subject>PrP knock-out</subject><subject>PrP-C1</subject><subject>Stroke</subject><subject>Therapeutic applications</subject><subject>Veins &amp; arteries</subject><issn>2001-3078</issn><issn>2001-3078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvEzEQx1cIRKvSj4BkiXOKn_u4ICBqoagSF-BqzXrHWacbO3idhPC9-H54SSjkgvDFntfvP2NNUTxn9IrRmr7klDJBq_qKU55dNW1oqR4V55N_NgUe__U-Ky7HcUnzaSRTdfO0OBO8kZI18rz4Me8hgkkY3XdILngSLGkjOD_rsm-LHcFvKWfgMGwGiGSLozMDjiTiFmEYienBL7LtPHlICtEtsg02c8mYYrhHAj6jfHSmX6FPk0zqkazjpLmOIWEu2LnUEyDrbPnkYCAxDHhC3qwT3OOz4onN2nh5vC-KzzfXn-bvZ3cf393O39zNjCoZm9WyLisAI0uFpbTIy1YB57QqlURbtRWTnCuVI1UjKEgrK9u0RohKNcq2nbgobg_cLsBS515XEPc6gNO_HCEuNMQ0_YeuW2HrSrSWdSJ_LWuRGwq8VR2lktUis14dWOtNu8LO5AkjDCfQ04h3vV6Era5kTaVqMuDFERDD1w2OSS_DJvo8vxa04UKWpWA5Sx2yTAzjGNE-KDCqp-XRv5dHT8ujj8vzp72dG3D_f0X6w_UX_vaGUs4n4dcHgPM2xBXsQhw6nWA_hGgjeONyn__u4SdQFN8i</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Brenna, Santra</creator><creator>Altmeppen, Hermann C.</creator><creator>Mohammadi, Behnam</creator><creator>Rissiek, Björn</creator><creator>Schlink, Florence</creator><creator>Ludewig, Peter</creator><creator>Krisp, Christoph</creator><creator>Schlüter, Hartmut</creator><creator>Failla, Antonio Virgilio</creator><creator>Schneider, Carola</creator><creator>Glatzel, Markus</creator><creator>Puig, Berta</creator><creator>Magnus, Tim</creator><general>Taylor &amp; Francis</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>0YH</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2255-8393</orcidid><orcidid>https://orcid.org/0000-0001-8233-2110</orcidid><orcidid>https://orcid.org/0000-0001-6232-9555</orcidid><orcidid>https://orcid.org/0000-0001-9439-6533</orcidid><orcidid>https://orcid.org/0000-0001-5327-5479</orcidid><orcidid>https://orcid.org/0000-0002-7720-8817</orcidid><orcidid>https://orcid.org/0000-0002-9358-7036</orcidid><orcidid>https://orcid.org/0000-0002-9178-3949</orcidid><orcidid>https://orcid.org/0000-0002-7137-0506</orcidid><orcidid>https://orcid.org/0000-0001-9025-6402</orcidid></search><sort><creationdate>20200101</creationdate><title>Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake</title><author>Brenna, Santra ; Altmeppen, Hermann C. ; Mohammadi, Behnam ; Rissiek, Björn ; Schlink, Florence ; Ludewig, Peter ; Krisp, Christoph ; Schlüter, Hartmut ; Failla, Antonio Virgilio ; Schneider, Carola ; Glatzel, Markus ; Puig, Berta ; Magnus, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrocytes</topic><topic>Brain</topic><topic>Cell interactions</topic><topic>Extracellular vesicles</topic><topic>extracellular vesicles (EVs)</topic><topic>ischaemia</topic><topic>Ischemia</topic><topic>Microglia</topic><topic>Physiology</topic><topic>Prion protein</topic><topic>prion protein (PrP)</topic><topic>Proteins</topic><topic>proteolytic processing</topic><topic>PrP knock-out</topic><topic>PrP-C1</topic><topic>Stroke</topic><topic>Therapeutic applications</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brenna, Santra</creatorcontrib><creatorcontrib>Altmeppen, Hermann C.</creatorcontrib><creatorcontrib>Mohammadi, Behnam</creatorcontrib><creatorcontrib>Rissiek, Björn</creatorcontrib><creatorcontrib>Schlink, Florence</creatorcontrib><creatorcontrib>Ludewig, Peter</creatorcontrib><creatorcontrib>Krisp, Christoph</creatorcontrib><creatorcontrib>Schlüter, Hartmut</creatorcontrib><creatorcontrib>Failla, Antonio Virgilio</creatorcontrib><creatorcontrib>Schneider, Carola</creatorcontrib><creatorcontrib>Glatzel, Markus</creatorcontrib><creatorcontrib>Puig, Berta</creatorcontrib><creatorcontrib>Magnus, Tim</creatorcontrib><collection>Taylor &amp; Francis</collection><collection>Wiley Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of extracellular vesicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brenna, Santra</au><au>Altmeppen, Hermann C.</au><au>Mohammadi, Behnam</au><au>Rissiek, Björn</au><au>Schlink, Florence</au><au>Ludewig, Peter</au><au>Krisp, Christoph</au><au>Schlüter, Hartmut</au><au>Failla, Antonio Virgilio</au><au>Schneider, Carola</au><au>Glatzel, Markus</au><au>Puig, Berta</au><au>Magnus, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake</atitle><jtitle>Journal of extracellular vesicles</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><epage>n/a</epage><issn>2001-3078</issn><eissn>2001-3078</eissn><abstract>Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><pmid>32944194</pmid><doi>10.1080/20013078.2020.1809065</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2255-8393</orcidid><orcidid>https://orcid.org/0000-0001-8233-2110</orcidid><orcidid>https://orcid.org/0000-0001-6232-9555</orcidid><orcidid>https://orcid.org/0000-0001-9439-6533</orcidid><orcidid>https://orcid.org/0000-0001-5327-5479</orcidid><orcidid>https://orcid.org/0000-0002-7720-8817</orcidid><orcidid>https://orcid.org/0000-0002-9358-7036</orcidid><orcidid>https://orcid.org/0000-0002-9178-3949</orcidid><orcidid>https://orcid.org/0000-0002-7137-0506</orcidid><orcidid>https://orcid.org/0000-0001-9025-6402</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2001-3078
ispartof Journal of extracellular vesicles, 2020-01, Vol.9 (1), p.n/a
issn 2001-3078
2001-3078
language eng
recordid cdi_crossref_primary_10_1080_20013078_2020_1809065
source Taylor & Francis; Wiley Open Access; PubMed Central
subjects Astrocytes
Brain
Cell interactions
Extracellular vesicles
extracellular vesicles (EVs)
ischaemia
Ischemia
Microglia
Physiology
Prion protein
prion protein (PrP)
Proteins
proteolytic processing
PrP knock-out
PrP-C1
Stroke
Therapeutic applications
Veins & arteries
title Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20brain-derived%20extracellular%20vesicles%20reveals%20changes%20in%20cellular%20origin%20after%20stroke%20and%20enrichment%20of%20the%20prion%20protein%20with%20a%20potential%20role%20in%20cellular%20uptake&rft.jtitle=Journal%20of%20extracellular%20vesicles&rft.au=Brenna,%20Santra&rft.date=2020-01-01&rft.volume=9&rft.issue=1&rft.epage=n/a&rft.issn=2001-3078&rft.eissn=2001-3078&rft_id=info:doi/10.1080/20013078.2020.1809065&rft_dat=%3Cproquest_cross%3E1010802001307820201809065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092346631&rft_id=info:pmid/32944194&rfr_iscdi=true