Loading…
Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake
Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core o...
Saved in:
Published in: | Journal of extracellular vesicles 2020-01, Vol.9 (1), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | |
container_title | Journal of extracellular vesicles |
container_volume | 9 |
creator | Brenna, Santra Altmeppen, Hermann C. Mohammadi, Behnam Rissiek, Björn Schlink, Florence Ludewig, Peter Krisp, Christoph Schlüter, Hartmut Failla, Antonio Virgilio Schneider, Carola Glatzel, Markus Puig, Berta Magnus, Tim |
description | Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake. |
doi_str_mv | 10.1080/20013078.2020.1809065 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_20013078_2020_1809065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8b3f873bf1d34191be2c0a2b5d004183</doaj_id><sourcerecordid>1010802001307820201809065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3</originalsourceid><addsrcrecordid>eNqNkktvEzEQx1cIRKvSj4BkiXOKn_u4ICBqoagSF-BqzXrHWacbO3idhPC9-H54SSjkgvDFntfvP2NNUTxn9IrRmr7klDJBq_qKU55dNW1oqR4V55N_NgUe__U-Ky7HcUnzaSRTdfO0OBO8kZI18rz4Me8hgkkY3XdILngSLGkjOD_rsm-LHcFvKWfgMGwGiGSLozMDjiTiFmEYienBL7LtPHlICtEtsg02c8mYYrhHAj6jfHSmX6FPk0zqkazjpLmOIWEu2LnUEyDrbPnkYCAxDHhC3qwT3OOz4onN2nh5vC-KzzfXn-bvZ3cf393O39zNjCoZm9WyLisAI0uFpbTIy1YB57QqlURbtRWTnCuVI1UjKEgrK9u0RohKNcq2nbgobg_cLsBS515XEPc6gNO_HCEuNMQ0_YeuW2HrSrSWdSJ_LWuRGwq8VR2lktUis14dWOtNu8LO5AkjDCfQ04h3vV6Era5kTaVqMuDFERDD1w2OSS_DJvo8vxa04UKWpWA5Sx2yTAzjGNE-KDCqp-XRv5dHT8ujj8vzp72dG3D_f0X6w_UX_vaGUs4n4dcHgPM2xBXsQhw6nWA_hGgjeONyn__u4SdQFN8i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092346631</pqid></control><display><type>article</type><title>Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake</title><source>Taylor & Francis</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Brenna, Santra ; Altmeppen, Hermann C. ; Mohammadi, Behnam ; Rissiek, Björn ; Schlink, Florence ; Ludewig, Peter ; Krisp, Christoph ; Schlüter, Hartmut ; Failla, Antonio Virgilio ; Schneider, Carola ; Glatzel, Markus ; Puig, Berta ; Magnus, Tim</creator><creatorcontrib>Brenna, Santra ; Altmeppen, Hermann C. ; Mohammadi, Behnam ; Rissiek, Björn ; Schlink, Florence ; Ludewig, Peter ; Krisp, Christoph ; Schlüter, Hartmut ; Failla, Antonio Virgilio ; Schneider, Carola ; Glatzel, Markus ; Puig, Berta ; Magnus, Tim</creatorcontrib><description>Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.</description><identifier>ISSN: 2001-3078</identifier><identifier>EISSN: 2001-3078</identifier><identifier>DOI: 10.1080/20013078.2020.1809065</identifier><identifier>PMID: 32944194</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Astrocytes ; Brain ; Cell interactions ; Extracellular vesicles ; extracellular vesicles (EVs) ; ischaemia ; Ischemia ; Microglia ; Physiology ; Prion protein ; prion protein (PrP) ; Proteins ; proteolytic processing ; PrP knock-out ; PrP-C1 ; Stroke ; Therapeutic applications ; Veins & arteries</subject><ispartof>Journal of extracellular vesicles, 2020-01, Vol.9 (1), p.n/a</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles. 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles. 2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3</citedby><cites>FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3</cites><orcidid>0000-0002-2255-8393 ; 0000-0001-8233-2110 ; 0000-0001-6232-9555 ; 0000-0001-9439-6533 ; 0000-0001-5327-5479 ; 0000-0002-7720-8817 ; 0000-0002-9358-7036 ; 0000-0002-9178-3949 ; 0000-0002-7137-0506 ; 0000-0001-9025-6402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480459/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480459/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11542,27481,27903,27904,46031,46455,53770,53772,59120,59121</link.rule.ids></links><search><creatorcontrib>Brenna, Santra</creatorcontrib><creatorcontrib>Altmeppen, Hermann C.</creatorcontrib><creatorcontrib>Mohammadi, Behnam</creatorcontrib><creatorcontrib>Rissiek, Björn</creatorcontrib><creatorcontrib>Schlink, Florence</creatorcontrib><creatorcontrib>Ludewig, Peter</creatorcontrib><creatorcontrib>Krisp, Christoph</creatorcontrib><creatorcontrib>Schlüter, Hartmut</creatorcontrib><creatorcontrib>Failla, Antonio Virgilio</creatorcontrib><creatorcontrib>Schneider, Carola</creatorcontrib><creatorcontrib>Glatzel, Markus</creatorcontrib><creatorcontrib>Puig, Berta</creatorcontrib><creatorcontrib>Magnus, Tim</creatorcontrib><title>Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake</title><title>Journal of extracellular vesicles</title><description>Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.</description><subject>Astrocytes</subject><subject>Brain</subject><subject>Cell interactions</subject><subject>Extracellular vesicles</subject><subject>extracellular vesicles (EVs)</subject><subject>ischaemia</subject><subject>Ischemia</subject><subject>Microglia</subject><subject>Physiology</subject><subject>Prion protein</subject><subject>prion protein (PrP)</subject><subject>Proteins</subject><subject>proteolytic processing</subject><subject>PrP knock-out</subject><subject>PrP-C1</subject><subject>Stroke</subject><subject>Therapeutic applications</subject><subject>Veins & arteries</subject><issn>2001-3078</issn><issn>2001-3078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvEzEQx1cIRKvSj4BkiXOKn_u4ICBqoagSF-BqzXrHWacbO3idhPC9-H54SSjkgvDFntfvP2NNUTxn9IrRmr7klDJBq_qKU55dNW1oqR4V55N_NgUe__U-Ky7HcUnzaSRTdfO0OBO8kZI18rz4Me8hgkkY3XdILngSLGkjOD_rsm-LHcFvKWfgMGwGiGSLozMDjiTiFmEYienBL7LtPHlICtEtsg02c8mYYrhHAj6jfHSmX6FPk0zqkazjpLmOIWEu2LnUEyDrbPnkYCAxDHhC3qwT3OOz4onN2nh5vC-KzzfXn-bvZ3cf393O39zNjCoZm9WyLisAI0uFpbTIy1YB57QqlURbtRWTnCuVI1UjKEgrK9u0RohKNcq2nbgobg_cLsBS515XEPc6gNO_HCEuNMQ0_YeuW2HrSrSWdSJ_LWuRGwq8VR2lktUis14dWOtNu8LO5AkjDCfQ04h3vV6Era5kTaVqMuDFERDD1w2OSS_DJvo8vxa04UKWpWA5Sx2yTAzjGNE-KDCqp-XRv5dHT8ujj8vzp72dG3D_f0X6w_UX_vaGUs4n4dcHgPM2xBXsQhw6nWA_hGgjeONyn__u4SdQFN8i</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Brenna, Santra</creator><creator>Altmeppen, Hermann C.</creator><creator>Mohammadi, Behnam</creator><creator>Rissiek, Björn</creator><creator>Schlink, Florence</creator><creator>Ludewig, Peter</creator><creator>Krisp, Christoph</creator><creator>Schlüter, Hartmut</creator><creator>Failla, Antonio Virgilio</creator><creator>Schneider, Carola</creator><creator>Glatzel, Markus</creator><creator>Puig, Berta</creator><creator>Magnus, Tim</creator><general>Taylor & Francis</general><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>0YH</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2255-8393</orcidid><orcidid>https://orcid.org/0000-0001-8233-2110</orcidid><orcidid>https://orcid.org/0000-0001-6232-9555</orcidid><orcidid>https://orcid.org/0000-0001-9439-6533</orcidid><orcidid>https://orcid.org/0000-0001-5327-5479</orcidid><orcidid>https://orcid.org/0000-0002-7720-8817</orcidid><orcidid>https://orcid.org/0000-0002-9358-7036</orcidid><orcidid>https://orcid.org/0000-0002-9178-3949</orcidid><orcidid>https://orcid.org/0000-0002-7137-0506</orcidid><orcidid>https://orcid.org/0000-0001-9025-6402</orcidid></search><sort><creationdate>20200101</creationdate><title>Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake</title><author>Brenna, Santra ; Altmeppen, Hermann C. ; Mohammadi, Behnam ; Rissiek, Björn ; Schlink, Florence ; Ludewig, Peter ; Krisp, Christoph ; Schlüter, Hartmut ; Failla, Antonio Virgilio ; Schneider, Carola ; Glatzel, Markus ; Puig, Berta ; Magnus, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrocytes</topic><topic>Brain</topic><topic>Cell interactions</topic><topic>Extracellular vesicles</topic><topic>extracellular vesicles (EVs)</topic><topic>ischaemia</topic><topic>Ischemia</topic><topic>Microglia</topic><topic>Physiology</topic><topic>Prion protein</topic><topic>prion protein (PrP)</topic><topic>Proteins</topic><topic>proteolytic processing</topic><topic>PrP knock-out</topic><topic>PrP-C1</topic><topic>Stroke</topic><topic>Therapeutic applications</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brenna, Santra</creatorcontrib><creatorcontrib>Altmeppen, Hermann C.</creatorcontrib><creatorcontrib>Mohammadi, Behnam</creatorcontrib><creatorcontrib>Rissiek, Björn</creatorcontrib><creatorcontrib>Schlink, Florence</creatorcontrib><creatorcontrib>Ludewig, Peter</creatorcontrib><creatorcontrib>Krisp, Christoph</creatorcontrib><creatorcontrib>Schlüter, Hartmut</creatorcontrib><creatorcontrib>Failla, Antonio Virgilio</creatorcontrib><creatorcontrib>Schneider, Carola</creatorcontrib><creatorcontrib>Glatzel, Markus</creatorcontrib><creatorcontrib>Puig, Berta</creatorcontrib><creatorcontrib>Magnus, Tim</creatorcontrib><collection>Taylor & Francis</collection><collection>Wiley Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of extracellular vesicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brenna, Santra</au><au>Altmeppen, Hermann C.</au><au>Mohammadi, Behnam</au><au>Rissiek, Björn</au><au>Schlink, Florence</au><au>Ludewig, Peter</au><au>Krisp, Christoph</au><au>Schlüter, Hartmut</au><au>Failla, Antonio Virgilio</au><au>Schneider, Carola</au><au>Glatzel, Markus</au><au>Puig, Berta</au><au>Magnus, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake</atitle><jtitle>Journal of extracellular vesicles</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><epage>n/a</epage><issn>2001-3078</issn><eissn>2001-3078</eissn><abstract>Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><pmid>32944194</pmid><doi>10.1080/20013078.2020.1809065</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2255-8393</orcidid><orcidid>https://orcid.org/0000-0001-8233-2110</orcidid><orcidid>https://orcid.org/0000-0001-6232-9555</orcidid><orcidid>https://orcid.org/0000-0001-9439-6533</orcidid><orcidid>https://orcid.org/0000-0001-5327-5479</orcidid><orcidid>https://orcid.org/0000-0002-7720-8817</orcidid><orcidid>https://orcid.org/0000-0002-9358-7036</orcidid><orcidid>https://orcid.org/0000-0002-9178-3949</orcidid><orcidid>https://orcid.org/0000-0002-7137-0506</orcidid><orcidid>https://orcid.org/0000-0001-9025-6402</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2001-3078 |
ispartof | Journal of extracellular vesicles, 2020-01, Vol.9 (1), p.n/a |
issn | 2001-3078 2001-3078 |
language | eng |
recordid | cdi_crossref_primary_10_1080_20013078_2020_1809065 |
source | Taylor & Francis; Wiley Open Access; PubMed Central |
subjects | Astrocytes Brain Cell interactions Extracellular vesicles extracellular vesicles (EVs) ischaemia Ischemia Microglia Physiology Prion protein prion protein (PrP) Proteins proteolytic processing PrP knock-out PrP-C1 Stroke Therapeutic applications Veins & arteries |
title | Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20brain-derived%20extracellular%20vesicles%20reveals%20changes%20in%20cellular%20origin%20after%20stroke%20and%20enrichment%20of%20the%20prion%20protein%20with%20a%20potential%20role%20in%20cellular%20uptake&rft.jtitle=Journal%20of%20extracellular%20vesicles&rft.au=Brenna,%20Santra&rft.date=2020-01-01&rft.volume=9&rft.issue=1&rft.epage=n/a&rft.issn=2001-3078&rft.eissn=2001-3078&rft_id=info:doi/10.1080/20013078.2020.1809065&rft_dat=%3Cproquest_cross%3E1010802001307820201809065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5611-84867aac465e64fe26b5a2207654ef7b71422554fe7930a4f47f9bc337595fbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092346631&rft_id=info:pmid/32944194&rfr_iscdi=true |