Loading…
Static and dynamic appointment scheduling to improve patient access time
Appointment schedules for outpatient clinics have great influence on efficiency and timely access to health care services. The number of new patients per week fluctuates, and capacity at the clinic varies because physicians have other obligations. However, most outpatient clinics use static appointm...
Saved in:
Published in: | Health systems 2018-05, Vol.7 (2), p.148-159 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3 |
container_end_page | 159 |
container_issue | 2 |
container_start_page | 148 |
container_title | Health systems |
container_volume | 7 |
creator | Laan, Corine van de Vrugt, Maartje Olsman, Jan Boucherie, Richard J. |
description | Appointment schedules for outpatient clinics have great influence on efficiency and timely access to health care services. The number of new patients per week fluctuates, and capacity at the clinic varies because physicians have other obligations. However, most outpatient clinics use static appointment schedules, which reserve capacity for each patient type. In this paper, we aim to optimise appointment scheduling with respect to access time, taking fluctuating patient arrivals and unavailabilities of physicians into account. To this end, we formulate a stochastic mixed integer programming problem, and approximate its solution invoking two different approaches: (1) a mixed integer programming approach that results in a static appointment schedule, and (2) Markov decision theory, which results in a dynamic scheduling strategy. We apply the methodologies to a case study of the surgical outpatient clinic of the Jeroen Bosch Hospital. We evaluate the effectiveness and limitations of both approaches by discrete event simulation; it appears that allocating only 2% of the capacity flexibly already increases the performance of the clinic significantly. |
doi_str_mv | 10.1080/20476965.2017.1403675 |
format | article |
fullrecord | <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_20476965_2017_1403675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_6452836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMottQ-gjAv0Jr_ZDaiFLVCwYW6DmkmaSMzkyFJK317Z2gtuPFu7uEezsflAHCL4BxBCe8wpIKXnM0xRGKOKCRcsAswHu4zXgpyedacjcA0pS_Yj2QYc3QNRgRhRAllY7B8zzp7U-i2KqpDq5tBd13wbW5sm4tktrba1b7dFDkUvuli2Nui6zODq42xKRXZN_YGXDldJzs97Qn4fH76WCxnq7eX18XjamYol3lWOu0YYswILKRlUDrqNKPMlZpq5oyQFUZlCRG11gnMKoG4XK-pJCUlkjgyAfdHbrdbN7Yy_RtR16qLvtHxoIL26q_T-q3ahL3ilGFJeA9gR4CJIaVo3TmLoBraVb_tqqFddWq3zz0cc751ITb6O8S6Ulkf6hBd1K3xSZH_ET-r8YDR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Static and dynamic appointment scheduling to improve patient access time</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><source>PubMed Central</source><creator>Laan, Corine ; van de Vrugt, Maartje ; Olsman, Jan ; Boucherie, Richard J.</creator><creatorcontrib>Laan, Corine ; van de Vrugt, Maartje ; Olsman, Jan ; Boucherie, Richard J.</creatorcontrib><description>Appointment schedules for outpatient clinics have great influence on efficiency and timely access to health care services. The number of new patients per week fluctuates, and capacity at the clinic varies because physicians have other obligations. However, most outpatient clinics use static appointment schedules, which reserve capacity for each patient type. In this paper, we aim to optimise appointment scheduling with respect to access time, taking fluctuating patient arrivals and unavailabilities of physicians into account. To this end, we formulate a stochastic mixed integer programming problem, and approximate its solution invoking two different approaches: (1) a mixed integer programming approach that results in a static appointment schedule, and (2) Markov decision theory, which results in a dynamic scheduling strategy. We apply the methodologies to a case study of the surgical outpatient clinic of the Jeroen Bosch Hospital. We evaluate the effectiveness and limitations of both approaches by discrete event simulation; it appears that allocating only 2% of the capacity flexibly already increases the performance of the clinic significantly.</description><identifier>ISSN: 2047-6965</identifier><identifier>EISSN: 2047-6973</identifier><identifier>DOI: 10.1080/20476965.2017.1403675</identifier><identifier>PMID: 31214345</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>capacity analysis ; decision process ; mathematical programming ; Original ; Queueing ; simulation</subject><ispartof>Health systems, 2018-05, Vol.7 (2), p.148-159</ispartof><rights>2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the Operational Research Society 2017</rights><rights>2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the Operational Research Society 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3</citedby><cites>FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452836/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452836/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Laan, Corine</creatorcontrib><creatorcontrib>van de Vrugt, Maartje</creatorcontrib><creatorcontrib>Olsman, Jan</creatorcontrib><creatorcontrib>Boucherie, Richard J.</creatorcontrib><title>Static and dynamic appointment scheduling to improve patient access time</title><title>Health systems</title><description>Appointment schedules for outpatient clinics have great influence on efficiency and timely access to health care services. The number of new patients per week fluctuates, and capacity at the clinic varies because physicians have other obligations. However, most outpatient clinics use static appointment schedules, which reserve capacity for each patient type. In this paper, we aim to optimise appointment scheduling with respect to access time, taking fluctuating patient arrivals and unavailabilities of physicians into account. To this end, we formulate a stochastic mixed integer programming problem, and approximate its solution invoking two different approaches: (1) a mixed integer programming approach that results in a static appointment schedule, and (2) Markov decision theory, which results in a dynamic scheduling strategy. We apply the methodologies to a case study of the surgical outpatient clinic of the Jeroen Bosch Hospital. We evaluate the effectiveness and limitations of both approaches by discrete event simulation; it appears that allocating only 2% of the capacity flexibly already increases the performance of the clinic significantly.</description><subject>capacity analysis</subject><subject>decision process</subject><subject>mathematical programming</subject><subject>Original</subject><subject>Queueing</subject><subject>simulation</subject><issn>2047-6965</issn><issn>2047-6973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kM1KAzEUhYMottQ-gjAv0Jr_ZDaiFLVCwYW6DmkmaSMzkyFJK317Z2gtuPFu7uEezsflAHCL4BxBCe8wpIKXnM0xRGKOKCRcsAswHu4zXgpyedacjcA0pS_Yj2QYc3QNRgRhRAllY7B8zzp7U-i2KqpDq5tBd13wbW5sm4tktrba1b7dFDkUvuli2Nui6zODq42xKRXZN_YGXDldJzs97Qn4fH76WCxnq7eX18XjamYol3lWOu0YYswILKRlUDrqNKPMlZpq5oyQFUZlCRG11gnMKoG4XK-pJCUlkjgyAfdHbrdbN7Yy_RtR16qLvtHxoIL26q_T-q3ahL3ilGFJeA9gR4CJIaVo3TmLoBraVb_tqqFddWq3zz0cc751ITb6O8S6Ulkf6hBd1K3xSZH_ET-r8YDR</recordid><startdate>20180504</startdate><enddate>20180504</enddate><creator>Laan, Corine</creator><creator>van de Vrugt, Maartje</creator><creator>Olsman, Jan</creator><creator>Boucherie, Richard J.</creator><general>Taylor & Francis</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20180504</creationdate><title>Static and dynamic appointment scheduling to improve patient access time</title><author>Laan, Corine ; van de Vrugt, Maartje ; Olsman, Jan ; Boucherie, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>capacity analysis</topic><topic>decision process</topic><topic>mathematical programming</topic><topic>Original</topic><topic>Queueing</topic><topic>simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laan, Corine</creatorcontrib><creatorcontrib>van de Vrugt, Maartje</creatorcontrib><creatorcontrib>Olsman, Jan</creatorcontrib><creatorcontrib>Boucherie, Richard J.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Health systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laan, Corine</au><au>van de Vrugt, Maartje</au><au>Olsman, Jan</au><au>Boucherie, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static and dynamic appointment scheduling to improve patient access time</atitle><jtitle>Health systems</jtitle><date>2018-05-04</date><risdate>2018</risdate><volume>7</volume><issue>2</issue><spage>148</spage><epage>159</epage><pages>148-159</pages><issn>2047-6965</issn><eissn>2047-6973</eissn><abstract>Appointment schedules for outpatient clinics have great influence on efficiency and timely access to health care services. The number of new patients per week fluctuates, and capacity at the clinic varies because physicians have other obligations. However, most outpatient clinics use static appointment schedules, which reserve capacity for each patient type. In this paper, we aim to optimise appointment scheduling with respect to access time, taking fluctuating patient arrivals and unavailabilities of physicians into account. To this end, we formulate a stochastic mixed integer programming problem, and approximate its solution invoking two different approaches: (1) a mixed integer programming approach that results in a static appointment schedule, and (2) Markov decision theory, which results in a dynamic scheduling strategy. We apply the methodologies to a case study of the surgical outpatient clinic of the Jeroen Bosch Hospital. We evaluate the effectiveness and limitations of both approaches by discrete event simulation; it appears that allocating only 2% of the capacity flexibly already increases the performance of the clinic significantly.</abstract><pub>Taylor & Francis</pub><pmid>31214345</pmid><doi>10.1080/20476965.2017.1403675</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-6965 |
ispartof | Health systems, 2018-05, Vol.7 (2), p.148-159 |
issn | 2047-6965 2047-6973 |
language | eng |
recordid | cdi_crossref_primary_10_1080_20476965_2017_1403675 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list); PubMed Central |
subjects | capacity analysis decision process mathematical programming Original Queueing simulation |
title | Static and dynamic appointment scheduling to improve patient access time |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20and%20dynamic%20appointment%20scheduling%20to%20improve%20patient%20access%20time&rft.jtitle=Health%20systems&rft.au=Laan,%20Corine&rft.date=2018-05-04&rft.volume=7&rft.issue=2&rft.spage=148&rft.epage=159&rft.pages=148-159&rft.issn=2047-6965&rft.eissn=2047-6973&rft_id=info:doi/10.1080/20476965.2017.1403675&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_6452836%3C/pubmedcentral_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31214345&rfr_iscdi=true |