Loading…

Static and dynamic appointment scheduling to improve patient access time

Appointment schedules for outpatient clinics have great influence on efficiency and timely access to health care services. The number of new patients per week fluctuates, and capacity at the clinic varies because physicians have other obligations. However, most outpatient clinics use static appointm...

Full description

Saved in:
Bibliographic Details
Published in:Health systems 2018-05, Vol.7 (2), p.148-159
Main Authors: Laan, Corine, van de Vrugt, Maartje, Olsman, Jan, Boucherie, Richard J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3
cites cdi_FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3
container_end_page 159
container_issue 2
container_start_page 148
container_title Health systems
container_volume 7
creator Laan, Corine
van de Vrugt, Maartje
Olsman, Jan
Boucherie, Richard J.
description Appointment schedules for outpatient clinics have great influence on efficiency and timely access to health care services. The number of new patients per week fluctuates, and capacity at the clinic varies because physicians have other obligations. However, most outpatient clinics use static appointment schedules, which reserve capacity for each patient type. In this paper, we aim to optimise appointment scheduling with respect to access time, taking fluctuating patient arrivals and unavailabilities of physicians into account. To this end, we formulate a stochastic mixed integer programming problem, and approximate its solution invoking two different approaches: (1) a mixed integer programming approach that results in a static appointment schedule, and (2) Markov decision theory, which results in a dynamic scheduling strategy. We apply the methodologies to a case study of the surgical outpatient clinic of the Jeroen Bosch Hospital. We evaluate the effectiveness and limitations of both approaches by discrete event simulation; it appears that allocating only 2% of the capacity flexibly already increases the performance of the clinic significantly.
doi_str_mv 10.1080/20476965.2017.1403675
format article
fullrecord <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_20476965_2017_1403675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_6452836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMottQ-gjAv0Jr_ZDaiFLVCwYW6DmkmaSMzkyFJK317Z2gtuPFu7uEezsflAHCL4BxBCe8wpIKXnM0xRGKOKCRcsAswHu4zXgpyedacjcA0pS_Yj2QYc3QNRgRhRAllY7B8zzp7U-i2KqpDq5tBd13wbW5sm4tktrba1b7dFDkUvuli2Nui6zODq42xKRXZN_YGXDldJzs97Qn4fH76WCxnq7eX18XjamYol3lWOu0YYswILKRlUDrqNKPMlZpq5oyQFUZlCRG11gnMKoG4XK-pJCUlkjgyAfdHbrdbN7Yy_RtR16qLvtHxoIL26q_T-q3ahL3ilGFJeA9gR4CJIaVo3TmLoBraVb_tqqFddWq3zz0cc751ITb6O8S6Ulkf6hBd1K3xSZH_ET-r8YDR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Static and dynamic appointment scheduling to improve patient access time</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><source>PubMed Central</source><creator>Laan, Corine ; van de Vrugt, Maartje ; Olsman, Jan ; Boucherie, Richard J.</creator><creatorcontrib>Laan, Corine ; van de Vrugt, Maartje ; Olsman, Jan ; Boucherie, Richard J.</creatorcontrib><description>Appointment schedules for outpatient clinics have great influence on efficiency and timely access to health care services. The number of new patients per week fluctuates, and capacity at the clinic varies because physicians have other obligations. However, most outpatient clinics use static appointment schedules, which reserve capacity for each patient type. In this paper, we aim to optimise appointment scheduling with respect to access time, taking fluctuating patient arrivals and unavailabilities of physicians into account. To this end, we formulate a stochastic mixed integer programming problem, and approximate its solution invoking two different approaches: (1) a mixed integer programming approach that results in a static appointment schedule, and (2) Markov decision theory, which results in a dynamic scheduling strategy. We apply the methodologies to a case study of the surgical outpatient clinic of the Jeroen Bosch Hospital. We evaluate the effectiveness and limitations of both approaches by discrete event simulation; it appears that allocating only 2% of the capacity flexibly already increases the performance of the clinic significantly.</description><identifier>ISSN: 2047-6965</identifier><identifier>EISSN: 2047-6973</identifier><identifier>DOI: 10.1080/20476965.2017.1403675</identifier><identifier>PMID: 31214345</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>capacity analysis ; decision process ; mathematical programming ; Original ; Queueing ; simulation</subject><ispartof>Health systems, 2018-05, Vol.7 (2), p.148-159</ispartof><rights>2017 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group on behalf of the Operational Research Society 2017</rights><rights>2017 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group on behalf of the Operational Research Society 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3</citedby><cites>FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452836/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452836/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Laan, Corine</creatorcontrib><creatorcontrib>van de Vrugt, Maartje</creatorcontrib><creatorcontrib>Olsman, Jan</creatorcontrib><creatorcontrib>Boucherie, Richard J.</creatorcontrib><title>Static and dynamic appointment scheduling to improve patient access time</title><title>Health systems</title><description>Appointment schedules for outpatient clinics have great influence on efficiency and timely access to health care services. The number of new patients per week fluctuates, and capacity at the clinic varies because physicians have other obligations. However, most outpatient clinics use static appointment schedules, which reserve capacity for each patient type. In this paper, we aim to optimise appointment scheduling with respect to access time, taking fluctuating patient arrivals and unavailabilities of physicians into account. To this end, we formulate a stochastic mixed integer programming problem, and approximate its solution invoking two different approaches: (1) a mixed integer programming approach that results in a static appointment schedule, and (2) Markov decision theory, which results in a dynamic scheduling strategy. We apply the methodologies to a case study of the surgical outpatient clinic of the Jeroen Bosch Hospital. We evaluate the effectiveness and limitations of both approaches by discrete event simulation; it appears that allocating only 2% of the capacity flexibly already increases the performance of the clinic significantly.</description><subject>capacity analysis</subject><subject>decision process</subject><subject>mathematical programming</subject><subject>Original</subject><subject>Queueing</subject><subject>simulation</subject><issn>2047-6965</issn><issn>2047-6973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kM1KAzEUhYMottQ-gjAv0Jr_ZDaiFLVCwYW6DmkmaSMzkyFJK317Z2gtuPFu7uEezsflAHCL4BxBCe8wpIKXnM0xRGKOKCRcsAswHu4zXgpyedacjcA0pS_Yj2QYc3QNRgRhRAllY7B8zzp7U-i2KqpDq5tBd13wbW5sm4tktrba1b7dFDkUvuli2Nui6zODq42xKRXZN_YGXDldJzs97Qn4fH76WCxnq7eX18XjamYol3lWOu0YYswILKRlUDrqNKPMlZpq5oyQFUZlCRG11gnMKoG4XK-pJCUlkjgyAfdHbrdbN7Yy_RtR16qLvtHxoIL26q_T-q3ahL3ilGFJeA9gR4CJIaVo3TmLoBraVb_tqqFddWq3zz0cc751ITb6O8S6Ulkf6hBd1K3xSZH_ET-r8YDR</recordid><startdate>20180504</startdate><enddate>20180504</enddate><creator>Laan, Corine</creator><creator>van de Vrugt, Maartje</creator><creator>Olsman, Jan</creator><creator>Boucherie, Richard J.</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20180504</creationdate><title>Static and dynamic appointment scheduling to improve patient access time</title><author>Laan, Corine ; van de Vrugt, Maartje ; Olsman, Jan ; Boucherie, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>capacity analysis</topic><topic>decision process</topic><topic>mathematical programming</topic><topic>Original</topic><topic>Queueing</topic><topic>simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laan, Corine</creatorcontrib><creatorcontrib>van de Vrugt, Maartje</creatorcontrib><creatorcontrib>Olsman, Jan</creatorcontrib><creatorcontrib>Boucherie, Richard J.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Health systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laan, Corine</au><au>van de Vrugt, Maartje</au><au>Olsman, Jan</au><au>Boucherie, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static and dynamic appointment scheduling to improve patient access time</atitle><jtitle>Health systems</jtitle><date>2018-05-04</date><risdate>2018</risdate><volume>7</volume><issue>2</issue><spage>148</spage><epage>159</epage><pages>148-159</pages><issn>2047-6965</issn><eissn>2047-6973</eissn><abstract>Appointment schedules for outpatient clinics have great influence on efficiency and timely access to health care services. The number of new patients per week fluctuates, and capacity at the clinic varies because physicians have other obligations. However, most outpatient clinics use static appointment schedules, which reserve capacity for each patient type. In this paper, we aim to optimise appointment scheduling with respect to access time, taking fluctuating patient arrivals and unavailabilities of physicians into account. To this end, we formulate a stochastic mixed integer programming problem, and approximate its solution invoking two different approaches: (1) a mixed integer programming approach that results in a static appointment schedule, and (2) Markov decision theory, which results in a dynamic scheduling strategy. We apply the methodologies to a case study of the surgical outpatient clinic of the Jeroen Bosch Hospital. We evaluate the effectiveness and limitations of both approaches by discrete event simulation; it appears that allocating only 2% of the capacity flexibly already increases the performance of the clinic significantly.</abstract><pub>Taylor &amp; Francis</pub><pmid>31214345</pmid><doi>10.1080/20476965.2017.1403675</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-6965
ispartof Health systems, 2018-05, Vol.7 (2), p.148-159
issn 2047-6965
2047-6973
language eng
recordid cdi_crossref_primary_10_1080_20476965_2017_1403675
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list); PubMed Central
subjects capacity analysis
decision process
mathematical programming
Original
Queueing
simulation
title Static and dynamic appointment scheduling to improve patient access time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20and%20dynamic%20appointment%20scheduling%20to%20improve%20patient%20access%20time&rft.jtitle=Health%20systems&rft.au=Laan,%20Corine&rft.date=2018-05-04&rft.volume=7&rft.issue=2&rft.spage=148&rft.epage=159&rft.pages=148-159&rft.issn=2047-6965&rft.eissn=2047-6973&rft_id=info:doi/10.1080/20476965.2017.1403675&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_6452836%3C/pubmedcentral_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-9faf5155c7278e508f4fa545f9a4a5fc78d2199014eef725d7168bb48394383f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31214345&rfr_iscdi=true