Loading…

Discovering health-care processes using DeciClareMiner

Flexible, human-centric and knowledge-intensive processes occur in many service industries and are prominent in the health-care sector. Knowledge workers (e.g., doctors or other health-care personnel) are given the flexibility to address each process instance (i.e., episode of care) in the way that...

Full description

Saved in:
Bibliographic Details
Published in:Health systems 2018-09, Vol.7 (3), p.195-211
Main Authors: Mertens, Steven, Gailly, Frederik, Poels, Geert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-131f4e1179a39432caa38623cf16aa0fb975219efdcb67eb549a51d8373b983b3
cites cdi_FETCH-LOGICAL-c468t-131f4e1179a39432caa38623cf16aa0fb975219efdcb67eb549a51d8373b983b3
container_end_page 211
container_issue 3
container_start_page 195
container_title Health systems
container_volume 7
creator Mertens, Steven
Gailly, Frederik
Poels, Geert
description Flexible, human-centric and knowledge-intensive processes occur in many service industries and are prominent in the health-care sector. Knowledge workers (e.g., doctors or other health-care personnel) are given the flexibility to address each process instance (i.e., episode of care) in the way that they deem most suitable. As a result, the knowledge of these processes is generally of a tacit nature, with many stakeholders lacking a clear view of a process. In this paper, we propose an algorithm called DeciClareMiner that combines process and decision mining to extract a process model and the corresponding knowledge from past executions of these processes. The algorithm was evaluated by applying it to a realistic health-care case and comparing the results to a complete search benchmark. In a relatively short time (10 min), DeciClareMiner was able to produce a DeciClare model that represents 93% of episodes of care with atomic constraints. Compared to the 50 h required to calculate the 100%-episode model via an exhaustive search approach, our result is considered a major improvement.
doi_str_mv 10.1080/20476965.2017.1405876
format article
fullrecord <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_20476965_2017_1405876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_6452831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-131f4e1179a39432caa38623cf16aa0fb975219efdcb67eb549a51d8373b983b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMottQ-gtAXmJqTezaitN6g4kbXIZPJtJHppCS10rd3htaCG8_mHM7P_y0-hK4BTwErfEMwk0ILPiUY5BQY5kqKMzTs_4XQkp6fbsEHaJzzJ-5GcUIEXKIBBQKMMjVEYh6yizufQrucrLxttqvC2eQnmxSdz9nnyVfus7l3YdZ0yWtofbpCF7Vtsh8f9wh9PD68z56LxdvTy-x-UTgm1LYACjXzAFJbqhklzlqqBKGuBmEtrkstOQHt68qVQvqSM205VIpKWmpFSzpCtwfu5qtc-8r5dptsYzYprG3am2iD-Zu0YWWWcWcE40RR6AD8AHAp5px8feoCNr1L8-vS9C7N0WXXuzv0QlvHtLbfMTWV2dp9E1OdbOtCNvR_xA8kIHoh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discovering health-care processes using DeciClareMiner</title><source>Taylor and Francis Science and Technology Collection</source><source>PubMed Central</source><creator>Mertens, Steven ; Gailly, Frederik ; Poels, Geert</creator><creatorcontrib>Mertens, Steven ; Gailly, Frederik ; Poels, Geert</creatorcontrib><description>Flexible, human-centric and knowledge-intensive processes occur in many service industries and are prominent in the health-care sector. Knowledge workers (e.g., doctors or other health-care personnel) are given the flexibility to address each process instance (i.e., episode of care) in the way that they deem most suitable. As a result, the knowledge of these processes is generally of a tacit nature, with many stakeholders lacking a clear view of a process. In this paper, we propose an algorithm called DeciClareMiner that combines process and decision mining to extract a process model and the corresponding knowledge from past executions of these processes. The algorithm was evaluated by applying it to a realistic health-care case and comparing the results to a complete search benchmark. In a relatively short time (10 min), DeciClareMiner was able to produce a DeciClare model that represents 93% of episodes of care with atomic constraints. Compared to the 50 h required to calculate the 100%-episode model via an exhaustive search approach, our result is considered a major improvement.</description><identifier>ISSN: 2047-6965</identifier><identifier>EISSN: 2047-6973</identifier><identifier>DOI: 10.1080/20476965.2017.1405876</identifier><identifier>PMID: 31214348</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>decision mining ; health-care modelling ; knowledge extraction ; Process mining ; Special Issue: SIG-Health Design, Innovation, and Impact of Healthcare IT</subject><ispartof>Health systems, 2018-09, Vol.7 (3), p.195-211</ispartof><rights>Operational Research Society 2017 2017</rights><rights>Operational Research Society 2017 2017 Operational Research Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-131f4e1179a39432caa38623cf16aa0fb975219efdcb67eb549a51d8373b983b3</citedby><cites>FETCH-LOGICAL-c468t-131f4e1179a39432caa38623cf16aa0fb975219efdcb67eb549a51d8373b983b3</cites><orcidid>0000-0003-0481-9745 ; 0000-0001-9247-6150 ; 0000-0001-8013-8322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452831/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452831/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Mertens, Steven</creatorcontrib><creatorcontrib>Gailly, Frederik</creatorcontrib><creatorcontrib>Poels, Geert</creatorcontrib><title>Discovering health-care processes using DeciClareMiner</title><title>Health systems</title><description>Flexible, human-centric and knowledge-intensive processes occur in many service industries and are prominent in the health-care sector. Knowledge workers (e.g., doctors or other health-care personnel) are given the flexibility to address each process instance (i.e., episode of care) in the way that they deem most suitable. As a result, the knowledge of these processes is generally of a tacit nature, with many stakeholders lacking a clear view of a process. In this paper, we propose an algorithm called DeciClareMiner that combines process and decision mining to extract a process model and the corresponding knowledge from past executions of these processes. The algorithm was evaluated by applying it to a realistic health-care case and comparing the results to a complete search benchmark. In a relatively short time (10 min), DeciClareMiner was able to produce a DeciClare model that represents 93% of episodes of care with atomic constraints. Compared to the 50 h required to calculate the 100%-episode model via an exhaustive search approach, our result is considered a major improvement.</description><subject>decision mining</subject><subject>health-care modelling</subject><subject>knowledge extraction</subject><subject>Process mining</subject><subject>Special Issue: SIG-Health Design, Innovation, and Impact of Healthcare IT</subject><issn>2047-6965</issn><issn>2047-6973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMottQ-gtAXmJqTezaitN6g4kbXIZPJtJHppCS10rd3htaCG8_mHM7P_y0-hK4BTwErfEMwk0ILPiUY5BQY5kqKMzTs_4XQkp6fbsEHaJzzJ-5GcUIEXKIBBQKMMjVEYh6yizufQrucrLxttqvC2eQnmxSdz9nnyVfus7l3YdZ0yWtofbpCF7Vtsh8f9wh9PD68z56LxdvTy-x-UTgm1LYACjXzAFJbqhklzlqqBKGuBmEtrkstOQHt68qVQvqSM205VIpKWmpFSzpCtwfu5qtc-8r5dptsYzYprG3am2iD-Zu0YWWWcWcE40RR6AD8AHAp5px8feoCNr1L8-vS9C7N0WXXuzv0QlvHtLbfMTWV2dp9E1OdbOtCNvR_xA8kIHoh</recordid><startdate>20180902</startdate><enddate>20180902</enddate><creator>Mertens, Steven</creator><creator>Gailly, Frederik</creator><creator>Poels, Geert</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0481-9745</orcidid><orcidid>https://orcid.org/0000-0001-9247-6150</orcidid><orcidid>https://orcid.org/0000-0001-8013-8322</orcidid></search><sort><creationdate>20180902</creationdate><title>Discovering health-care processes using DeciClareMiner</title><author>Mertens, Steven ; Gailly, Frederik ; Poels, Geert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-131f4e1179a39432caa38623cf16aa0fb975219efdcb67eb549a51d8373b983b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>decision mining</topic><topic>health-care modelling</topic><topic>knowledge extraction</topic><topic>Process mining</topic><topic>Special Issue: SIG-Health Design, Innovation, and Impact of Healthcare IT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mertens, Steven</creatorcontrib><creatorcontrib>Gailly, Frederik</creatorcontrib><creatorcontrib>Poels, Geert</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Health systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mertens, Steven</au><au>Gailly, Frederik</au><au>Poels, Geert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering health-care processes using DeciClareMiner</atitle><jtitle>Health systems</jtitle><date>2018-09-02</date><risdate>2018</risdate><volume>7</volume><issue>3</issue><spage>195</spage><epage>211</epage><pages>195-211</pages><issn>2047-6965</issn><eissn>2047-6973</eissn><abstract>Flexible, human-centric and knowledge-intensive processes occur in many service industries and are prominent in the health-care sector. Knowledge workers (e.g., doctors or other health-care personnel) are given the flexibility to address each process instance (i.e., episode of care) in the way that they deem most suitable. As a result, the knowledge of these processes is generally of a tacit nature, with many stakeholders lacking a clear view of a process. In this paper, we propose an algorithm called DeciClareMiner that combines process and decision mining to extract a process model and the corresponding knowledge from past executions of these processes. The algorithm was evaluated by applying it to a realistic health-care case and comparing the results to a complete search benchmark. In a relatively short time (10 min), DeciClareMiner was able to produce a DeciClare model that represents 93% of episodes of care with atomic constraints. Compared to the 50 h required to calculate the 100%-episode model via an exhaustive search approach, our result is considered a major improvement.</abstract><pub>Taylor &amp; Francis</pub><pmid>31214348</pmid><doi>10.1080/20476965.2017.1405876</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0481-9745</orcidid><orcidid>https://orcid.org/0000-0001-9247-6150</orcidid><orcidid>https://orcid.org/0000-0001-8013-8322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-6965
ispartof Health systems, 2018-09, Vol.7 (3), p.195-211
issn 2047-6965
2047-6973
language eng
recordid cdi_crossref_primary_10_1080_20476965_2017_1405876
source Taylor and Francis Science and Technology Collection; PubMed Central
subjects decision mining
health-care modelling
knowledge extraction
Process mining
Special Issue: SIG-Health Design, Innovation, and Impact of Healthcare IT
title Discovering health-care processes using DeciClareMiner
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20health-care%20processes%20using%20DeciClareMiner&rft.jtitle=Health%20systems&rft.au=Mertens,%20Steven&rft.date=2018-09-02&rft.volume=7&rft.issue=3&rft.spage=195&rft.epage=211&rft.pages=195-211&rft.issn=2047-6965&rft.eissn=2047-6973&rft_id=info:doi/10.1080/20476965.2017.1405876&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_6452831%3C/pubmedcentral_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-131f4e1179a39432caa38623cf16aa0fb975219efdcb67eb549a51d8373b983b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31214348&rfr_iscdi=true