Loading…

Streptococcus suis synthesizes deoxyadenosine and adenosine by 5'-nucleotidase to dampen host immune responses

Streptococcus suis is a major porcine bacterial pathogen and emerging zoonotic agent. S. suis 5ʹ-nucleotidase is able to convert adenosine monophosphate to adenosine, resulting in inhibiting neutrophil functions in vitro and it is an important virulence factor. Here, we show that S. suis 5ʹ-nucleoti...

Full description

Saved in:
Bibliographic Details
Published in:Virulence 2018-01, Vol.9 (1), p.1509-1520
Main Authors: Dai, Jiao, Lai, Liying, Tang, Huanyu, Wang, Weixue, Wang, Shuoyue, Lu, Chengping, Yao, Huochun, Fan, Hongjie, Wu, Zongfu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Streptococcus suis is a major porcine bacterial pathogen and emerging zoonotic agent. S. suis 5ʹ-nucleotidase is able to convert adenosine monophosphate to adenosine, resulting in inhibiting neutrophil functions in vitro and it is an important virulence factor. Here, we show that S. suis 5ʹ-nucleotidase not only enables producing 2ʹ-deoxyadenosine from 2ʹ-deoxyadenosine monophosphate by the enzymatic assay and reversed-phase high performance liquid chromatography (RP-HPLC) analysis in vitro, but also synthesizes both 2ʹ-deoxyadenosine and adenosine in mouse blood in vivo by RP-HPLC and liquid chromatography with tandem mass spectrometry analyses. Cellular cytotoxicity assay and Western blot analysis indicated that the production of 2ʹ-deoxyadenosine by 5ʹ-nucleotidase triggered the death of mouse macrophages RAW 264.7 in a caspase-3-dependent way. The in vivo infection experiment showed that 2ʹ-deoxyadenosine synthesized by 5ʹ-nucleotidase caused monocytopenia in mouse blood. The in vivo transcriptome analysis in mouse blood showed the inhibitory effect of 5ʹ-nucleotidase on neutrophil functions and immune responses probably mediated through the generation of adenosine. Taken together, these findings indicate that S. suis synthesizes 2ʹ-deoxyadenosine and adenosine by 5ʹ-nucleotidase to dampen host immune responses, which represents a new mechanism of S. suis pathogenesis.
ISSN:2150-5594
2150-5608
DOI:10.1080/21505594.2018.1520544