Loading…
SAR ATR based on displacement- and rotation-insensitive CNN
Among many synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms, convolutional neural network (CNN)-based algorithms are the commonly used methods. However, most previous SAR ATR studies assume that the precise location (and heading direction) of a target is (are) known and i...
Saved in:
Published in: | Remote sensing letters 2016-09, Vol.7 (9), p.895-904 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3 |
container_end_page | 904 |
container_issue | 9 |
container_start_page | 895 |
container_title | Remote sensing letters |
container_volume | 7 |
creator | Du, Kangning Deng, Yunkai Wang, Robert Zhao, Tuan Li, Ning |
description | Among many synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms, convolutional neural network (CNN)-based algorithms are the commonly used methods. However, most previous SAR ATR studies assume that the precise location (and heading direction) of a target is (are) known and image is not suffering from translations, which are not always true in realistic applications. In this letter, a modern CNN model is trained by samples with no rotation and displacement, and is evaluated on the dataset with rotation and displacement. The results show that the classification accuracy is very low when the target's displacement or rotation angle is different from the pre-assumed value in the training dataset. To overcome this problem, a displacement- and rotation-insensitive deep CNN is trained by augmented dataset. The proposed method is evaluated on moving and stationary target acquisition and recognition (MSTAR) dataset. It proves that our proposed method could achieve high accuracy in all three subsets which have different displacement and rotation settings. |
doi_str_mv | 10.1080/2150704X.2016.1196837 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_2150704X_2016_1196837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4095400651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGo_grDgxcvWzCbZJHixFP-BVKgVegvpJgspu0lNtkq_vVtaPXhwLjMMv_d4PIQuAY8BC3xTAMMc0-W4wFCOAWQpCD9Bg_0_55iJ09-bLs_RKKU17ocAFVwM0O3bZJ5NFvNspZM1WfCZcWnT6Mq21nd5pr3JYuh054LPnU_WJ9e5T5tNZ7MLdFbrJtnRcQ_R-8P9YvqUv7w-Pk8nL3lFOHS5lEUfSdeYg6GCGCsF5ZUhEkQfRFNjqBUrSqUsDSO8tkQKWzKsWV1DRVZkiK4PvpsYPrY2dap1qbJNo70N26RAFIwVnGLo0as_6Dpso-_TKeBSEFZASXuKHagqhpSirdUmulbHnQKs9q2qn1bVvlV1bLXX3R10ztchtvorxMaoTu-aEOuofeWSIv9bfANTTHsq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798352164</pqid></control><display><type>article</type><title>SAR ATR based on displacement- and rotation-insensitive CNN</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Du, Kangning ; Deng, Yunkai ; Wang, Robert ; Zhao, Tuan ; Li, Ning</creator><creatorcontrib>Du, Kangning ; Deng, Yunkai ; Wang, Robert ; Zhao, Tuan ; Li, Ning</creatorcontrib><description>Among many synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms, convolutional neural network (CNN)-based algorithms are the commonly used methods. However, most previous SAR ATR studies assume that the precise location (and heading direction) of a target is (are) known and image is not suffering from translations, which are not always true in realistic applications. In this letter, a modern CNN model is trained by samples with no rotation and displacement, and is evaluated on the dataset with rotation and displacement. The results show that the classification accuracy is very low when the target's displacement or rotation angle is different from the pre-assumed value in the training dataset. To overcome this problem, a displacement- and rotation-insensitive deep CNN is trained by augmented dataset. The proposed method is evaluated on moving and stationary target acquisition and recognition (MSTAR) dataset. It proves that our proposed method could achieve high accuracy in all three subsets which have different displacement and rotation settings.</description><identifier>ISSN: 2150-704X</identifier><identifier>EISSN: 2150-7058</identifier><identifier>DOI: 10.1080/2150704X.2016.1196837</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Accuracy ; Algorithms ; Classification ; Datasets ; Displacement ; Neural networks ; Sensors ; Synthetic aperture radar ; Target acquisition ; Target recognition ; Translations</subject><ispartof>Remote sensing letters, 2016-09, Vol.7 (9), p.895-904</ispartof><rights>2016 Informa UK Limited, trading as Taylor & Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3</citedby><cites>FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3</cites><orcidid>0000-0002-3351-9007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Du, Kangning</creatorcontrib><creatorcontrib>Deng, Yunkai</creatorcontrib><creatorcontrib>Wang, Robert</creatorcontrib><creatorcontrib>Zhao, Tuan</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><title>SAR ATR based on displacement- and rotation-insensitive CNN</title><title>Remote sensing letters</title><description>Among many synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms, convolutional neural network (CNN)-based algorithms are the commonly used methods. However, most previous SAR ATR studies assume that the precise location (and heading direction) of a target is (are) known and image is not suffering from translations, which are not always true in realistic applications. In this letter, a modern CNN model is trained by samples with no rotation and displacement, and is evaluated on the dataset with rotation and displacement. The results show that the classification accuracy is very low when the target's displacement or rotation angle is different from the pre-assumed value in the training dataset. To overcome this problem, a displacement- and rotation-insensitive deep CNN is trained by augmented dataset. The proposed method is evaluated on moving and stationary target acquisition and recognition (MSTAR) dataset. It proves that our proposed method could achieve high accuracy in all three subsets which have different displacement and rotation settings.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Datasets</subject><subject>Displacement</subject><subject>Neural networks</subject><subject>Sensors</subject><subject>Synthetic aperture radar</subject><subject>Target acquisition</subject><subject>Target recognition</subject><subject>Translations</subject><issn>2150-704X</issn><issn>2150-7058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGo_grDgxcvWzCbZJHixFP-BVKgVegvpJgspu0lNtkq_vVtaPXhwLjMMv_d4PIQuAY8BC3xTAMMc0-W4wFCOAWQpCD9Bg_0_55iJ09-bLs_RKKU17ocAFVwM0O3bZJ5NFvNspZM1WfCZcWnT6Mq21nd5pr3JYuh054LPnU_WJ9e5T5tNZ7MLdFbrJtnRcQ_R-8P9YvqUv7w-Pk8nL3lFOHS5lEUfSdeYg6GCGCsF5ZUhEkQfRFNjqBUrSqUsDSO8tkQKWzKsWV1DRVZkiK4PvpsYPrY2dap1qbJNo70N26RAFIwVnGLo0as_6Dpso-_TKeBSEFZASXuKHagqhpSirdUmulbHnQKs9q2qn1bVvlV1bLXX3R10ztchtvorxMaoTu-aEOuofeWSIv9bfANTTHsq</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Du, Kangning</creator><creator>Deng, Yunkai</creator><creator>Wang, Robert</creator><creator>Zhao, Tuan</creator><creator>Li, Ning</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3351-9007</orcidid></search><sort><creationdate>20160901</creationdate><title>SAR ATR based on displacement- and rotation-insensitive CNN</title><author>Du, Kangning ; Deng, Yunkai ; Wang, Robert ; Zhao, Tuan ; Li, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Datasets</topic><topic>Displacement</topic><topic>Neural networks</topic><topic>Sensors</topic><topic>Synthetic aperture radar</topic><topic>Target acquisition</topic><topic>Target recognition</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Kangning</creatorcontrib><creatorcontrib>Deng, Yunkai</creatorcontrib><creatorcontrib>Wang, Robert</creatorcontrib><creatorcontrib>Zhao, Tuan</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Kangning</au><au>Deng, Yunkai</au><au>Wang, Robert</au><au>Zhao, Tuan</au><au>Li, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAR ATR based on displacement- and rotation-insensitive CNN</atitle><jtitle>Remote sensing letters</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>7</volume><issue>9</issue><spage>895</spage><epage>904</epage><pages>895-904</pages><issn>2150-704X</issn><eissn>2150-7058</eissn><abstract>Among many synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms, convolutional neural network (CNN)-based algorithms are the commonly used methods. However, most previous SAR ATR studies assume that the precise location (and heading direction) of a target is (are) known and image is not suffering from translations, which are not always true in realistic applications. In this letter, a modern CNN model is trained by samples with no rotation and displacement, and is evaluated on the dataset with rotation and displacement. The results show that the classification accuracy is very low when the target's displacement or rotation angle is different from the pre-assumed value in the training dataset. To overcome this problem, a displacement- and rotation-insensitive deep CNN is trained by augmented dataset. The proposed method is evaluated on moving and stationary target acquisition and recognition (MSTAR) dataset. It proves that our proposed method could achieve high accuracy in all three subsets which have different displacement and rotation settings.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/2150704X.2016.1196837</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3351-9007</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-704X |
ispartof | Remote sensing letters, 2016-09, Vol.7 (9), p.895-904 |
issn | 2150-704X 2150-7058 |
language | eng |
recordid | cdi_crossref_primary_10_1080_2150704X_2016_1196837 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Accuracy Algorithms Classification Datasets Displacement Neural networks Sensors Synthetic aperture radar Target acquisition Target recognition Translations |
title | SAR ATR based on displacement- and rotation-insensitive CNN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAR%20ATR%20based%20on%20displacement-%20and%20rotation-insensitive%20CNN&rft.jtitle=Remote%20sensing%20letters&rft.au=Du,%20Kangning&rft.date=2016-09-01&rft.volume=7&rft.issue=9&rft.spage=895&rft.epage=904&rft.pages=895-904&rft.issn=2150-704X&rft.eissn=2150-7058&rft_id=info:doi/10.1080/2150704X.2016.1196837&rft_dat=%3Cproquest_cross%3E4095400651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1798352164&rft_id=info:pmid/&rfr_iscdi=true |