Loading…

SAR ATR based on displacement- and rotation-insensitive CNN

Among many synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms, convolutional neural network (CNN)-based algorithms are the commonly used methods. However, most previous SAR ATR studies assume that the precise location (and heading direction) of a target is (are) known and i...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing letters 2016-09, Vol.7 (9), p.895-904
Main Authors: Du, Kangning, Deng, Yunkai, Wang, Robert, Zhao, Tuan, Li, Ning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3
cites cdi_FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3
container_end_page 904
container_issue 9
container_start_page 895
container_title Remote sensing letters
container_volume 7
creator Du, Kangning
Deng, Yunkai
Wang, Robert
Zhao, Tuan
Li, Ning
description Among many synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms, convolutional neural network (CNN)-based algorithms are the commonly used methods. However, most previous SAR ATR studies assume that the precise location (and heading direction) of a target is (are) known and image is not suffering from translations, which are not always true in realistic applications. In this letter, a modern CNN model is trained by samples with no rotation and displacement, and is evaluated on the dataset with rotation and displacement. The results show that the classification accuracy is very low when the target's displacement or rotation angle is different from the pre-assumed value in the training dataset. To overcome this problem, a displacement- and rotation-insensitive deep CNN is trained by augmented dataset. The proposed method is evaluated on moving and stationary target acquisition and recognition (MSTAR) dataset. It proves that our proposed method could achieve high accuracy in all three subsets which have different displacement and rotation settings.
doi_str_mv 10.1080/2150704X.2016.1196837
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_2150704X_2016_1196837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4095400651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGo_grDgxcvWzCbZJHixFP-BVKgVegvpJgspu0lNtkq_vVtaPXhwLjMMv_d4PIQuAY8BC3xTAMMc0-W4wFCOAWQpCD9Bg_0_55iJ09-bLs_RKKU17ocAFVwM0O3bZJ5NFvNspZM1WfCZcWnT6Mq21nd5pr3JYuh054LPnU_WJ9e5T5tNZ7MLdFbrJtnRcQ_R-8P9YvqUv7w-Pk8nL3lFOHS5lEUfSdeYg6GCGCsF5ZUhEkQfRFNjqBUrSqUsDSO8tkQKWzKsWV1DRVZkiK4PvpsYPrY2dap1qbJNo70N26RAFIwVnGLo0as_6Dpso-_TKeBSEFZASXuKHagqhpSirdUmulbHnQKs9q2qn1bVvlV1bLXX3R10ztchtvorxMaoTu-aEOuofeWSIv9bfANTTHsq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798352164</pqid></control><display><type>article</type><title>SAR ATR based on displacement- and rotation-insensitive CNN</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Du, Kangning ; Deng, Yunkai ; Wang, Robert ; Zhao, Tuan ; Li, Ning</creator><creatorcontrib>Du, Kangning ; Deng, Yunkai ; Wang, Robert ; Zhao, Tuan ; Li, Ning</creatorcontrib><description>Among many synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms, convolutional neural network (CNN)-based algorithms are the commonly used methods. However, most previous SAR ATR studies assume that the precise location (and heading direction) of a target is (are) known and image is not suffering from translations, which are not always true in realistic applications. In this letter, a modern CNN model is trained by samples with no rotation and displacement, and is evaluated on the dataset with rotation and displacement. The results show that the classification accuracy is very low when the target's displacement or rotation angle is different from the pre-assumed value in the training dataset. To overcome this problem, a displacement- and rotation-insensitive deep CNN is trained by augmented dataset. The proposed method is evaluated on moving and stationary target acquisition and recognition (MSTAR) dataset. It proves that our proposed method could achieve high accuracy in all three subsets which have different displacement and rotation settings.</description><identifier>ISSN: 2150-704X</identifier><identifier>EISSN: 2150-7058</identifier><identifier>DOI: 10.1080/2150704X.2016.1196837</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Accuracy ; Algorithms ; Classification ; Datasets ; Displacement ; Neural networks ; Sensors ; Synthetic aperture radar ; Target acquisition ; Target recognition ; Translations</subject><ispartof>Remote sensing letters, 2016-09, Vol.7 (9), p.895-904</ispartof><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3</citedby><cites>FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3</cites><orcidid>0000-0002-3351-9007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Du, Kangning</creatorcontrib><creatorcontrib>Deng, Yunkai</creatorcontrib><creatorcontrib>Wang, Robert</creatorcontrib><creatorcontrib>Zhao, Tuan</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><title>SAR ATR based on displacement- and rotation-insensitive CNN</title><title>Remote sensing letters</title><description>Among many synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms, convolutional neural network (CNN)-based algorithms are the commonly used methods. However, most previous SAR ATR studies assume that the precise location (and heading direction) of a target is (are) known and image is not suffering from translations, which are not always true in realistic applications. In this letter, a modern CNN model is trained by samples with no rotation and displacement, and is evaluated on the dataset with rotation and displacement. The results show that the classification accuracy is very low when the target's displacement or rotation angle is different from the pre-assumed value in the training dataset. To overcome this problem, a displacement- and rotation-insensitive deep CNN is trained by augmented dataset. The proposed method is evaluated on moving and stationary target acquisition and recognition (MSTAR) dataset. It proves that our proposed method could achieve high accuracy in all three subsets which have different displacement and rotation settings.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Datasets</subject><subject>Displacement</subject><subject>Neural networks</subject><subject>Sensors</subject><subject>Synthetic aperture radar</subject><subject>Target acquisition</subject><subject>Target recognition</subject><subject>Translations</subject><issn>2150-704X</issn><issn>2150-7058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGo_grDgxcvWzCbZJHixFP-BVKgVegvpJgspu0lNtkq_vVtaPXhwLjMMv_d4PIQuAY8BC3xTAMMc0-W4wFCOAWQpCD9Bg_0_55iJ09-bLs_RKKU17ocAFVwM0O3bZJ5NFvNspZM1WfCZcWnT6Mq21nd5pr3JYuh054LPnU_WJ9e5T5tNZ7MLdFbrJtnRcQ_R-8P9YvqUv7w-Pk8nL3lFOHS5lEUfSdeYg6GCGCsF5ZUhEkQfRFNjqBUrSqUsDSO8tkQKWzKsWV1DRVZkiK4PvpsYPrY2dap1qbJNo70N26RAFIwVnGLo0as_6Dpso-_TKeBSEFZASXuKHagqhpSirdUmulbHnQKs9q2qn1bVvlV1bLXX3R10ztchtvorxMaoTu-aEOuofeWSIv9bfANTTHsq</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Du, Kangning</creator><creator>Deng, Yunkai</creator><creator>Wang, Robert</creator><creator>Zhao, Tuan</creator><creator>Li, Ning</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3351-9007</orcidid></search><sort><creationdate>20160901</creationdate><title>SAR ATR based on displacement- and rotation-insensitive CNN</title><author>Du, Kangning ; Deng, Yunkai ; Wang, Robert ; Zhao, Tuan ; Li, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Datasets</topic><topic>Displacement</topic><topic>Neural networks</topic><topic>Sensors</topic><topic>Synthetic aperture radar</topic><topic>Target acquisition</topic><topic>Target recognition</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Kangning</creatorcontrib><creatorcontrib>Deng, Yunkai</creatorcontrib><creatorcontrib>Wang, Robert</creatorcontrib><creatorcontrib>Zhao, Tuan</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Kangning</au><au>Deng, Yunkai</au><au>Wang, Robert</au><au>Zhao, Tuan</au><au>Li, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAR ATR based on displacement- and rotation-insensitive CNN</atitle><jtitle>Remote sensing letters</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>7</volume><issue>9</issue><spage>895</spage><epage>904</epage><pages>895-904</pages><issn>2150-704X</issn><eissn>2150-7058</eissn><abstract>Among many synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms, convolutional neural network (CNN)-based algorithms are the commonly used methods. However, most previous SAR ATR studies assume that the precise location (and heading direction) of a target is (are) known and image is not suffering from translations, which are not always true in realistic applications. In this letter, a modern CNN model is trained by samples with no rotation and displacement, and is evaluated on the dataset with rotation and displacement. The results show that the classification accuracy is very low when the target's displacement or rotation angle is different from the pre-assumed value in the training dataset. To overcome this problem, a displacement- and rotation-insensitive deep CNN is trained by augmented dataset. The proposed method is evaluated on moving and stationary target acquisition and recognition (MSTAR) dataset. It proves that our proposed method could achieve high accuracy in all three subsets which have different displacement and rotation settings.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/2150704X.2016.1196837</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3351-9007</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2150-704X
ispartof Remote sensing letters, 2016-09, Vol.7 (9), p.895-904
issn 2150-704X
2150-7058
language eng
recordid cdi_crossref_primary_10_1080_2150704X_2016_1196837
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Accuracy
Algorithms
Classification
Datasets
Displacement
Neural networks
Sensors
Synthetic aperture radar
Target acquisition
Target recognition
Translations
title SAR ATR based on displacement- and rotation-insensitive CNN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAR%20ATR%20based%20on%20displacement-%20and%20rotation-insensitive%20CNN&rft.jtitle=Remote%20sensing%20letters&rft.au=Du,%20Kangning&rft.date=2016-09-01&rft.volume=7&rft.issue=9&rft.spage=895&rft.epage=904&rft.pages=895-904&rft.issn=2150-704X&rft.eissn=2150-7058&rft_id=info:doi/10.1080/2150704X.2016.1196837&rft_dat=%3Cproquest_cross%3E4095400651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-992837af071d483de9847cd3918000a4dd4e8b44996d537fe398e650a5ff1c3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1798352164&rft_id=info:pmid/&rfr_iscdi=true