Loading…

Using the characteristic parameters of Hilbert marginal spectrum for indirectly estimating copper content in maize leaves under copper stress

The aim of this study is to test whether the Hilbert marginal spectrum characteristic parameters of maize leaves reflectance of 400-900 nm can effectively estimate copper (Cu) contents in maize leaves under copper stress. Firstly, the reflectance spectra of 11 stress levels were measured from maize...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing letters 2019-11, Vol.10 (11), p.1067-1076
Main Authors: Guo, Hui, Yang, Keming, Cheng, Long, Wang, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-20ea534692ff2c111e6df62374aaa0af392f3f3aa7e20c82d2ba6073eab16a153
cites cdi_FETCH-LOGICAL-c338t-20ea534692ff2c111e6df62374aaa0af392f3f3aa7e20c82d2ba6073eab16a153
container_end_page 1076
container_issue 11
container_start_page 1067
container_title Remote sensing letters
container_volume 10
creator Guo, Hui
Yang, Keming
Cheng, Long
Wang, Min
description The aim of this study is to test whether the Hilbert marginal spectrum characteristic parameters of maize leaves reflectance of 400-900 nm can effectively estimate copper (Cu) contents in maize leaves under copper stress. Firstly, the reflectance spectra of 11 stress levels were measured from maize leaves using a spectrometer under laboratory conditions. Secondly, we processed the reflectance and obtained the Hilbert marginal spectrum. We found that there were some differences among the Hilbert marginal spectrums. We then defined characteristic parameters of Marginal spectrum Surrounding Area (MSA), Marginal Spectrum Energy (MSE), Marginal Spectrum Mean (MSM) and Marginal Spectrum Amplitude Maximum (MSAM). In the end, we analyzed the correlations between the four characteristic parameters and copper contents in maize leaves by Pearson correlation coefficient (r). We established the prediction models for copper contents in maize leaves, and the models were also validated. The results suggested that the characteristic parameters could well characterize the weak information of copper pollution and spectral distortion in leaves reflectance. The four characteristic parameters had significant effectiveness in estimating copper contents in leaves, and the MSE is the best. The prediction model based on MSE has the highest accuracy with R 2 of 0.557 and RMSE of 3.619 μg g −1 .
doi_str_mv 10.1080/2150704X.2019.1646932
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_2150704X_2019_1646932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2280941660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-20ea534692ff2c111e6df62374aaa0af392f3f3aa7e20c82d2ba6073eab16a153</originalsourceid><addsrcrecordid>eNp9UMtKBDEQHERBUT9BCHieNY957U0RdYUFLwreQm-msxuZl52Msv6D_2zGVY_m0ql0VZGqJDkTfCZ4xS-kyHnJs-eZ5GI-E0VWzJXcS46m97TkebX_d8-eD5NT7194PEpkVVkdJZ9P3nVrFjbIzAYITEByPjjDhohajNCz3rKFa1ZIgbVAa9dBw_yAJtDYMtsTc13tKOJmyzCKWwiTqemHASmOLmAXIimq3QeyBuENPRu7-nv7TfKB0PuT5MBC4_H0Zx4nT7c3j9eLdPlwd399tUyNUlVIJUfIVUwqrZVGCIFFbQupygwAOFgVF8oqgBIlN5Ws5QoKXiqElShA5Oo4Od_5DtS_jvHL-qUfKcbyWsqKzzNRFDyy8h3LUO89odUDxWy01YLrqXz9W76eytc_5Ufd5U7nulhOC-89NbUOsG16sgSdcV6r_y2-AOBCjyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2280941660</pqid></control><display><type>article</type><title>Using the characteristic parameters of Hilbert marginal spectrum for indirectly estimating copper content in maize leaves under copper stress</title><source>Taylor and Francis Science and Technology Collection</source><creator>Guo, Hui ; Yang, Keming ; Cheng, Long ; Wang, Min</creator><creatorcontrib>Guo, Hui ; Yang, Keming ; Cheng, Long ; Wang, Min</creatorcontrib><description>The aim of this study is to test whether the Hilbert marginal spectrum characteristic parameters of maize leaves reflectance of 400-900 nm can effectively estimate copper (Cu) contents in maize leaves under copper stress. Firstly, the reflectance spectra of 11 stress levels were measured from maize leaves using a spectrometer under laboratory conditions. Secondly, we processed the reflectance and obtained the Hilbert marginal spectrum. We found that there were some differences among the Hilbert marginal spectrums. We then defined characteristic parameters of Marginal spectrum Surrounding Area (MSA), Marginal Spectrum Energy (MSE), Marginal Spectrum Mean (MSM) and Marginal Spectrum Amplitude Maximum (MSAM). In the end, we analyzed the correlations between the four characteristic parameters and copper contents in maize leaves by Pearson correlation coefficient (r). We established the prediction models for copper contents in maize leaves, and the models were also validated. The results suggested that the characteristic parameters could well characterize the weak information of copper pollution and spectral distortion in leaves reflectance. The four characteristic parameters had significant effectiveness in estimating copper contents in leaves, and the MSE is the best. The prediction model based on MSE has the highest accuracy with R 2 of 0.557 and RMSE of 3.619 μg g −1 .</description><identifier>ISSN: 2150-704X</identifier><identifier>EISSN: 2150-7058</identifier><identifier>DOI: 10.1080/2150704X.2019.1646932</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Copper ; Corn ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Estimation ; Leaves ; Mathematical models ; Parameter estimation ; Parameters ; Pollution ; Prediction models ; Reflectance</subject><ispartof>Remote sensing letters, 2019-11, Vol.10 (11), p.1067-1076</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-20ea534692ff2c111e6df62374aaa0af392f3f3aa7e20c82d2ba6073eab16a153</citedby><cites>FETCH-LOGICAL-c338t-20ea534692ff2c111e6df62374aaa0af392f3f3aa7e20c82d2ba6073eab16a153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Hui</creatorcontrib><creatorcontrib>Yang, Keming</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><title>Using the characteristic parameters of Hilbert marginal spectrum for indirectly estimating copper content in maize leaves under copper stress</title><title>Remote sensing letters</title><description>The aim of this study is to test whether the Hilbert marginal spectrum characteristic parameters of maize leaves reflectance of 400-900 nm can effectively estimate copper (Cu) contents in maize leaves under copper stress. Firstly, the reflectance spectra of 11 stress levels were measured from maize leaves using a spectrometer under laboratory conditions. Secondly, we processed the reflectance and obtained the Hilbert marginal spectrum. We found that there were some differences among the Hilbert marginal spectrums. We then defined characteristic parameters of Marginal spectrum Surrounding Area (MSA), Marginal Spectrum Energy (MSE), Marginal Spectrum Mean (MSM) and Marginal Spectrum Amplitude Maximum (MSAM). In the end, we analyzed the correlations between the four characteristic parameters and copper contents in maize leaves by Pearson correlation coefficient (r). We established the prediction models for copper contents in maize leaves, and the models were also validated. The results suggested that the characteristic parameters could well characterize the weak information of copper pollution and spectral distortion in leaves reflectance. The four characteristic parameters had significant effectiveness in estimating copper contents in leaves, and the MSE is the best. The prediction model based on MSE has the highest accuracy with R 2 of 0.557 and RMSE of 3.619 μg g −1 .</description><subject>Copper</subject><subject>Corn</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Estimation</subject><subject>Leaves</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Pollution</subject><subject>Prediction models</subject><subject>Reflectance</subject><issn>2150-704X</issn><issn>2150-7058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQHERBUT9BCHieNY957U0RdYUFLwreQm-msxuZl52Msv6D_2zGVY_m0ql0VZGqJDkTfCZ4xS-kyHnJs-eZ5GI-E0VWzJXcS46m97TkebX_d8-eD5NT7194PEpkVVkdJZ9P3nVrFjbIzAYITEByPjjDhohajNCz3rKFa1ZIgbVAa9dBw_yAJtDYMtsTc13tKOJmyzCKWwiTqemHASmOLmAXIimq3QeyBuENPRu7-nv7TfKB0PuT5MBC4_H0Zx4nT7c3j9eLdPlwd399tUyNUlVIJUfIVUwqrZVGCIFFbQupygwAOFgVF8oqgBIlN5Ws5QoKXiqElShA5Oo4Od_5DtS_jvHL-qUfKcbyWsqKzzNRFDyy8h3LUO89odUDxWy01YLrqXz9W76eytc_5Ufd5U7nulhOC-89NbUOsG16sgSdcV6r_y2-AOBCjyQ</recordid><startdate>20191102</startdate><enddate>20191102</enddate><creator>Guo, Hui</creator><creator>Yang, Keming</creator><creator>Cheng, Long</creator><creator>Wang, Min</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20191102</creationdate><title>Using the characteristic parameters of Hilbert marginal spectrum for indirectly estimating copper content in maize leaves under copper stress</title><author>Guo, Hui ; Yang, Keming ; Cheng, Long ; Wang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-20ea534692ff2c111e6df62374aaa0af392f3f3aa7e20c82d2ba6073eab16a153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Copper</topic><topic>Corn</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Estimation</topic><topic>Leaves</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Pollution</topic><topic>Prediction models</topic><topic>Reflectance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hui</creatorcontrib><creatorcontrib>Yang, Keming</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hui</au><au>Yang, Keming</au><au>Cheng, Long</au><au>Wang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the characteristic parameters of Hilbert marginal spectrum for indirectly estimating copper content in maize leaves under copper stress</atitle><jtitle>Remote sensing letters</jtitle><date>2019-11-02</date><risdate>2019</risdate><volume>10</volume><issue>11</issue><spage>1067</spage><epage>1076</epage><pages>1067-1076</pages><issn>2150-704X</issn><eissn>2150-7058</eissn><abstract>The aim of this study is to test whether the Hilbert marginal spectrum characteristic parameters of maize leaves reflectance of 400-900 nm can effectively estimate copper (Cu) contents in maize leaves under copper stress. Firstly, the reflectance spectra of 11 stress levels were measured from maize leaves using a spectrometer under laboratory conditions. Secondly, we processed the reflectance and obtained the Hilbert marginal spectrum. We found that there were some differences among the Hilbert marginal spectrums. We then defined characteristic parameters of Marginal spectrum Surrounding Area (MSA), Marginal Spectrum Energy (MSE), Marginal Spectrum Mean (MSM) and Marginal Spectrum Amplitude Maximum (MSAM). In the end, we analyzed the correlations between the four characteristic parameters and copper contents in maize leaves by Pearson correlation coefficient (r). We established the prediction models for copper contents in maize leaves, and the models were also validated. The results suggested that the characteristic parameters could well characterize the weak information of copper pollution and spectral distortion in leaves reflectance. The four characteristic parameters had significant effectiveness in estimating copper contents in leaves, and the MSE is the best. The prediction model based on MSE has the highest accuracy with R 2 of 0.557 and RMSE of 3.619 μg g −1 .</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/2150704X.2019.1646932</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-704X
ispartof Remote sensing letters, 2019-11, Vol.10 (11), p.1067-1076
issn 2150-704X
2150-7058
language eng
recordid cdi_crossref_primary_10_1080_2150704X_2019_1646932
source Taylor and Francis Science and Technology Collection
subjects Copper
Corn
Correlation analysis
Correlation coefficient
Correlation coefficients
Estimation
Leaves
Mathematical models
Parameter estimation
Parameters
Pollution
Prediction models
Reflectance
title Using the characteristic parameters of Hilbert marginal spectrum for indirectly estimating copper content in maize leaves under copper stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20characteristic%20parameters%20of%20Hilbert%20marginal%20spectrum%20for%20indirectly%20estimating%20copper%20content%20in%20maize%20leaves%20under%20copper%20stress&rft.jtitle=Remote%20sensing%20letters&rft.au=Guo,%20Hui&rft.date=2019-11-02&rft.volume=10&rft.issue=11&rft.spage=1067&rft.epage=1076&rft.pages=1067-1076&rft.issn=2150-704X&rft.eissn=2150-7058&rft_id=info:doi/10.1080/2150704X.2019.1646932&rft_dat=%3Cproquest_cross%3E2280941660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-20ea534692ff2c111e6df62374aaa0af392f3f3aa7e20c82d2ba6073eab16a153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2280941660&rft_id=info:pmid/&rfr_iscdi=true