Loading…

Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions

In this paper, we introduce an efficient method based on two-dimensional block-pulse functions (2D-BPFs) to approximate the solution of the 2D-linear stochastic Volterra-Fredholm integral equation. Also, we present convergence analysis of the proposed method. Illustrative examples are included to de...

Full description

Saved in:
Bibliographic Details
Published in:Cogent mathematics 2017-01, Vol.4 (1), p.1296750
Main Authors: Fallahpour, M., Khodabin, M., Maleknejad, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-b21e1e83050f28c3366708c8c1e4ccfc76a3a08adbb0c21ab7514e2b6a8dd32a3
cites cdi_FETCH-LOGICAL-c315t-b21e1e83050f28c3366708c8c1e4ccfc76a3a08adbb0c21ab7514e2b6a8dd32a3
container_end_page
container_issue 1
container_start_page 1296750
container_title Cogent mathematics
container_volume 4
creator Fallahpour, M.
Khodabin, M.
Maleknejad, K.
description In this paper, we introduce an efficient method based on two-dimensional block-pulse functions (2D-BPFs) to approximate the solution of the 2D-linear stochastic Volterra-Fredholm integral equation. Also, we present convergence analysis of the proposed method. Illustrative examples are included to demonstrate the validity and applicability of the proposed method.
doi_str_mv 10.1080/23311835.2017.1296750
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_23311835_2017_1296750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012876504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-b21e1e83050f28c3366708c8c1e4ccfc76a3a08adbb0c21ab7514e2b6a8dd32a3</originalsourceid><addsrcrecordid>eNp9kc1O3TAQhaOKSiDKIyBZYp2Lf25iswMhfiohdUO7tSaOwzV17DB2QHmpPmMdLpVYdeXRmXM-yz5VdcrohlFFz7kQjCnRbDhlcsP4RSsb-qU6WvV6XRx8mg-rk5SeKaVsK1sp-FH153FnI9rsDHhiESMSCOCX5FIZevIK3vWQXQzEBRLm0eK7NUU_v6txIPkt1r0bbUhFKDvvggUkKUezg1TQ5Ff0ucChvkXb76IfCyzbJ1zvfJn3-G4hME1-ceGJ5J0lnY_mdz3NPlkyzMGspvSt-jpAUU4-zuPq5-3N4_V9_fDj7vv11UNtBGty3XFmmVWCNnTgygjRtpIqowyzW2MGI1sQQBX0XUcNZ9DJhm0t71pQfS84iOPqbM-dML7MNmX9HGcsj0u6_DNXsm3otriavctgTAntoCd0I-CiGdVrO_pfO2tK6o92Su5yn3NhiDjCW0Tf6wyLjzggBOOSFv9H_AV2pJun</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012876504</pqid></control><display><type>article</type><title>Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions</title><source>Taylor &amp; Francis Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Fallahpour, M. ; Khodabin, M. ; Maleknejad, K.</creator><contributor>Angermann, Lutz</contributor><creatorcontrib>Fallahpour, M. ; Khodabin, M. ; Maleknejad, K. ; Angermann, Lutz</creatorcontrib><description>In this paper, we introduce an efficient method based on two-dimensional block-pulse functions (2D-BPFs) to approximate the solution of the 2D-linear stochastic Volterra-Fredholm integral equation. Also, we present convergence analysis of the proposed method. Illustrative examples are included to demonstrate the validity and applicability of the proposed method.</description><identifier>ISSN: 2331-1835</identifier><identifier>EISSN: 2331-1835</identifier><identifier>EISSN: 2768-4830</identifier><identifier>DOI: 10.1080/23311835.2017.1296750</identifier><language>eng</language><publisher>Abingdon: Cogent</publisher><subject>2D-integral equation ; 45Axx ; 45Bxx ; 45Dxx ; 65C20 ; 65Gxx ; block-pulse functions ; Brownian motion process ; Error analysis ; Integral equations ; Ito integral ; operational matrix ; stochastic integral equation ; Volterra-Fredholm integral equation</subject><ispartof>Cogent mathematics, 2017-01, Vol.4 (1), p.1296750</ispartof><rights>2017 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license 2017</rights><rights>2017 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-b21e1e83050f28c3366708c8c1e4ccfc76a3a08adbb0c21ab7514e2b6a8dd32a3</citedby><cites>FETCH-LOGICAL-c315t-b21e1e83050f28c3366708c8c1e4ccfc76a3a08adbb0c21ab7514e2b6a8dd32a3</cites><orcidid>0000-0001-6113-2208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23311835.2017.1296750$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2012876504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27502,27924,27925,37012,44590,59143,59144</link.rule.ids></links><search><contributor>Angermann, Lutz</contributor><creatorcontrib>Fallahpour, M.</creatorcontrib><creatorcontrib>Khodabin, M.</creatorcontrib><creatorcontrib>Maleknejad, K.</creatorcontrib><title>Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions</title><title>Cogent mathematics</title><description>In this paper, we introduce an efficient method based on two-dimensional block-pulse functions (2D-BPFs) to approximate the solution of the 2D-linear stochastic Volterra-Fredholm integral equation. Also, we present convergence analysis of the proposed method. Illustrative examples are included to demonstrate the validity and applicability of the proposed method.</description><subject>2D-integral equation</subject><subject>45Axx</subject><subject>45Bxx</subject><subject>45Dxx</subject><subject>65C20</subject><subject>65Gxx</subject><subject>block-pulse functions</subject><subject>Brownian motion process</subject><subject>Error analysis</subject><subject>Integral equations</subject><subject>Ito integral</subject><subject>operational matrix</subject><subject>stochastic integral equation</subject><subject>Volterra-Fredholm integral equation</subject><issn>2331-1835</issn><issn>2331-1835</issn><issn>2768-4830</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc1O3TAQhaOKSiDKIyBZYp2Lf25iswMhfiohdUO7tSaOwzV17DB2QHmpPmMdLpVYdeXRmXM-yz5VdcrohlFFz7kQjCnRbDhlcsP4RSsb-qU6WvV6XRx8mg-rk5SeKaVsK1sp-FH153FnI9rsDHhiESMSCOCX5FIZevIK3vWQXQzEBRLm0eK7NUU_v6txIPkt1r0bbUhFKDvvggUkKUezg1TQ5Ff0ucChvkXb76IfCyzbJ1zvfJn3-G4hME1-ceGJ5J0lnY_mdz3NPlkyzMGspvSt-jpAUU4-zuPq5-3N4_V9_fDj7vv11UNtBGty3XFmmVWCNnTgygjRtpIqowyzW2MGI1sQQBX0XUcNZ9DJhm0t71pQfS84iOPqbM-dML7MNmX9HGcsj0u6_DNXsm3otriavctgTAntoCd0I-CiGdVrO_pfO2tK6o92Su5yn3NhiDjCW0Tf6wyLjzggBOOSFv9H_AV2pJun</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Fallahpour, M.</creator><creator>Khodabin, M.</creator><creator>Maleknejad, K.</creator><general>Cogent</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6113-2208</orcidid></search><sort><creationdate>20170101</creationdate><title>Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions</title><author>Fallahpour, M. ; Khodabin, M. ; Maleknejad, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-b21e1e83050f28c3366708c8c1e4ccfc76a3a08adbb0c21ab7514e2b6a8dd32a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2D-integral equation</topic><topic>45Axx</topic><topic>45Bxx</topic><topic>45Dxx</topic><topic>65C20</topic><topic>65Gxx</topic><topic>block-pulse functions</topic><topic>Brownian motion process</topic><topic>Error analysis</topic><topic>Integral equations</topic><topic>Ito integral</topic><topic>operational matrix</topic><topic>stochastic integral equation</topic><topic>Volterra-Fredholm integral equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fallahpour, M.</creatorcontrib><creatorcontrib>Khodabin, M.</creatorcontrib><creatorcontrib>Maleknejad, K.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Cogent mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fallahpour, M.</au><au>Khodabin, M.</au><au>Maleknejad, K.</au><au>Angermann, Lutz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions</atitle><jtitle>Cogent mathematics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>4</volume><issue>1</issue><spage>1296750</spage><pages>1296750-</pages><issn>2331-1835</issn><eissn>2331-1835</eissn><eissn>2768-4830</eissn><abstract>In this paper, we introduce an efficient method based on two-dimensional block-pulse functions (2D-BPFs) to approximate the solution of the 2D-linear stochastic Volterra-Fredholm integral equation. Also, we present convergence analysis of the proposed method. Illustrative examples are included to demonstrate the validity and applicability of the proposed method.</abstract><cop>Abingdon</cop><pub>Cogent</pub><doi>10.1080/23311835.2017.1296750</doi><orcidid>https://orcid.org/0000-0001-6113-2208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-1835
ispartof Cogent mathematics, 2017-01, Vol.4 (1), p.1296750
issn 2331-1835
2331-1835
2768-4830
language eng
recordid cdi_crossref_primary_10_1080_23311835_2017_1296750
source Taylor & Francis Open Access; Publicly Available Content (ProQuest)
subjects 2D-integral equation
45Axx
45Bxx
45Dxx
65C20
65Gxx
block-pulse functions
Brownian motion process
Error analysis
Integral equations
Ito integral
operational matrix
stochastic integral equation
Volterra-Fredholm integral equation
title Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20error%20analysis%20and%20validation%20in%20numerical%20solution%20of%20two-dimensional%20linear%20stochastic%20Volterra-Fredholm%20integral%20equation%20by%20applying%20the%20block-pulse%20functions&rft.jtitle=Cogent%20mathematics&rft.au=Fallahpour,%20M.&rft.date=2017-01-01&rft.volume=4&rft.issue=1&rft.spage=1296750&rft.pages=1296750-&rft.issn=2331-1835&rft.eissn=2331-1835&rft_id=info:doi/10.1080/23311835.2017.1296750&rft_dat=%3Cproquest_cross%3E2012876504%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-b21e1e83050f28c3366708c8c1e4ccfc76a3a08adbb0c21ab7514e2b6a8dd32a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2012876504&rft_id=info:pmid/&rfr_iscdi=true