Loading…

Removal of nitrogen from wastewater using microalgae and microalgae-bacteria consortia

Exceeding nitrogen discharge into natural water bodies can lead to eutrophication in natural aquatic environments, as well as the decline in shellfish habitat and aquatic plant life. Currently, bacterial biological treatment process is the most common process employed in wastewater treatment plants,...

Full description

Saved in:
Bibliographic Details
Published in:Cogent environmental science 2016-12, Vol.2 (1), p.1275089
Main Authors: Jia, Huijun, Yuan, Qiuyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exceeding nitrogen discharge into natural water bodies can lead to eutrophication in natural aquatic environments, as well as the decline in shellfish habitat and aquatic plant life. Currently, bacterial biological treatment process is the most common process employed in wastewater treatment plants, which requires extensive oxygen. The large demand for oxygen provided by mechanical aeration is costly and can strip out volatile compounds. Microalgae are photosynthetic micro-organisms, which can be a good source of oxygen in the wastewater treatment process. The effect of using microalgae, either solo or in consortia systems along with other micro-organisms (mainly bacteria) have been studied by researchers to improve their contaminant removal efficiency. In a consortia system, microalgae generate oxygen through photosynthesis to satisfy the oxygen requirement of bacteria. Simultaneously, they also remove contaminating nutrients throughout their growth cycle. Various factors affect the performance of the consortia systems such as lighting, pH, and species of microalgae and bacteria. Since microalgae are suspended and dispersed in the media, harvesting is crucial to achieving a high-quality effluent. This paper presents an overview on nitrogen removal from wastewater using different types of systems including microalgae solo and microalgae-bacteria consortia systems. The parameters that affect system performance as well as biomass harvesting methods are also discussed.
ISSN:2331-1843
2331-1843
2765-8511
DOI:10.1080/23311843.2016.1275089