Loading…

Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun

In this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventor...

Full description

Saved in:
Bibliographic Details
Published in:IIE transactions 2023-03, Vol.55 (3), p.301-313
Main Authors: Shu, Jia, Song, Miao, Wang, Beilun, Yang, Jing, Zhu, Shaowen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413
cites cdi_FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413
container_end_page 313
container_issue 3
container_start_page 301
container_title IIE transactions
container_volume 55
creator Shu, Jia
Song, Miao
Wang, Beilun
Yang, Jing
Zhu, Shaowen
description In this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventory pre-positioning, and relief facility to affected area assignment so as to maximize the responsiveness. The problem is formulated as a chance-constrained stochastic programming model in which a joint chance constraint is utilized to measure the responsiveness of the humanitarian relief network. We approximate the proposed model by another model with chance constraints, which can be solved based on two settings of the demand information in each affected area: (i) the demand distribution is given; and (ii) the partial demand information, e.g., the mean, the variance, and the support, is given. We use a case study of the 2014 Typhoon Rammasun to illustrate the application of the model. Computational results demonstrate the effectiveness of the solution approaches and show that the chance-constrained stochastic programming models are superior to the deterministic model for humanitarian relief network design.
doi_str_mv 10.1080/24725854.2022.2074577
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_24725854_2022_2074577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753442698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsGg_ghDw3Jo_m2zWk1LUCgWh1HOYbhJN3U3WZFetn94trR69zAxv3ryBX5ZdEDwlWOIrmheUS55PKaZ0KEXOi-IoG-30CZeCHv_NPD_NxiltMMak4ByLcpTped-Adx1EBx5FUztjkTfdZ4hvSJvkXvw1WprUBp_ch_EmJdTAl2vcN3QueAReI0AVJINS1-stChattu1rGHZLaBpIvT_PTizUyYwP_Sx7vr9bzeaTxdPD4-x2MakYk90E9JpDUTFKBBFaWroGazQzWJI1plYIRo0RVkvCaDFIuqQY2LqSXNBS54SdZZf73DaG996kTm1CH_3wUtGCszynopSDi-9dVQwpRWNVG10DcasIVjum6pep2jFVB6bD3c3-znkbYgMDolqrDrZ1iDaCr1xS7P-IH4vSfsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753442698</pqid></control><display><type>article</type><title>Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun</title><source>Taylor and Francis Science and Technology Collection</source><creator>Shu, Jia ; Song, Miao ; Wang, Beilun ; Yang, Jing ; Zhu, Shaowen</creator><creatorcontrib>Shu, Jia ; Song, Miao ; Wang, Beilun ; Yang, Jing ; Zhu, Shaowen</creatorcontrib><description>In this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventory pre-positioning, and relief facility to affected area assignment so as to maximize the responsiveness. The problem is formulated as a chance-constrained stochastic programming model in which a joint chance constraint is utilized to measure the responsiveness of the humanitarian relief network. We approximate the proposed model by another model with chance constraints, which can be solved based on two settings of the demand information in each affected area: (i) the demand distribution is given; and (ii) the partial demand information, e.g., the mean, the variance, and the support, is given. We use a case study of the 2014 Typhoon Rammasun to illustrate the application of the model. Computational results demonstrate the effectiveness of the solution approaches and show that the chance-constrained stochastic programming models are superior to the deterministic model for humanitarian relief network design.</description><identifier>ISSN: 2472-5854</identifier><identifier>EISSN: 2472-5862</identifier><identifier>DOI: 10.1080/24725854.2022.2074577</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Case studies ; chance-constrained stochastic programming ; Constraint modelling ; Demand ; Disaster relief ; humanitarian relief network design ; Humanitarianism ; Network design ; Optimization ; Responsiveness maximization ; Stochastic models ; Stochastic programming</subject><ispartof>IIE transactions, 2023-03, Vol.55 (3), p.301-313</ispartof><rights>Copyright © 2022 "IISE" 2022</rights><rights>Copyright © 2022 “IISE”</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413</citedby><cites>FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shu, Jia</creatorcontrib><creatorcontrib>Song, Miao</creatorcontrib><creatorcontrib>Wang, Beilun</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Zhu, Shaowen</creatorcontrib><title>Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun</title><title>IIE transactions</title><description>In this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventory pre-positioning, and relief facility to affected area assignment so as to maximize the responsiveness. The problem is formulated as a chance-constrained stochastic programming model in which a joint chance constraint is utilized to measure the responsiveness of the humanitarian relief network. We approximate the proposed model by another model with chance constraints, which can be solved based on two settings of the demand information in each affected area: (i) the demand distribution is given; and (ii) the partial demand information, e.g., the mean, the variance, and the support, is given. We use a case study of the 2014 Typhoon Rammasun to illustrate the application of the model. Computational results demonstrate the effectiveness of the solution approaches and show that the chance-constrained stochastic programming models are superior to the deterministic model for humanitarian relief network design.</description><subject>Case studies</subject><subject>chance-constrained stochastic programming</subject><subject>Constraint modelling</subject><subject>Demand</subject><subject>Disaster relief</subject><subject>humanitarian relief network design</subject><subject>Humanitarianism</subject><subject>Network design</subject><subject>Optimization</subject><subject>Responsiveness maximization</subject><subject>Stochastic models</subject><subject>Stochastic programming</subject><issn>2472-5854</issn><issn>2472-5862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxRdRsGg_ghDw3Jo_m2zWk1LUCgWh1HOYbhJN3U3WZFetn94trR69zAxv3ryBX5ZdEDwlWOIrmheUS55PKaZ0KEXOi-IoG-30CZeCHv_NPD_NxiltMMak4ByLcpTped-Adx1EBx5FUztjkTfdZ4hvSJvkXvw1WprUBp_ch_EmJdTAl2vcN3QueAReI0AVJINS1-stChattu1rGHZLaBpIvT_PTizUyYwP_Sx7vr9bzeaTxdPD4-x2MakYk90E9JpDUTFKBBFaWroGazQzWJI1plYIRo0RVkvCaDFIuqQY2LqSXNBS54SdZZf73DaG996kTm1CH_3wUtGCszynopSDi-9dVQwpRWNVG10DcasIVjum6pep2jFVB6bD3c3-znkbYgMDolqrDrZ1iDaCr1xS7P-IH4vSfsc</recordid><startdate>20230304</startdate><enddate>20230304</enddate><creator>Shu, Jia</creator><creator>Song, Miao</creator><creator>Wang, Beilun</creator><creator>Yang, Jing</creator><creator>Zhu, Shaowen</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20230304</creationdate><title>Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun</title><author>Shu, Jia ; Song, Miao ; Wang, Beilun ; Yang, Jing ; Zhu, Shaowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Case studies</topic><topic>chance-constrained stochastic programming</topic><topic>Constraint modelling</topic><topic>Demand</topic><topic>Disaster relief</topic><topic>humanitarian relief network design</topic><topic>Humanitarianism</topic><topic>Network design</topic><topic>Optimization</topic><topic>Responsiveness maximization</topic><topic>Stochastic models</topic><topic>Stochastic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Jia</creatorcontrib><creatorcontrib>Song, Miao</creatorcontrib><creatorcontrib>Wang, Beilun</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Zhu, Shaowen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IIE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Jia</au><au>Song, Miao</au><au>Wang, Beilun</au><au>Yang, Jing</au><au>Zhu, Shaowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun</atitle><jtitle>IIE transactions</jtitle><date>2023-03-04</date><risdate>2023</risdate><volume>55</volume><issue>3</issue><spage>301</spage><epage>313</epage><pages>301-313</pages><issn>2472-5854</issn><eissn>2472-5862</eissn><abstract>In this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventory pre-positioning, and relief facility to affected area assignment so as to maximize the responsiveness. The problem is formulated as a chance-constrained stochastic programming model in which a joint chance constraint is utilized to measure the responsiveness of the humanitarian relief network. We approximate the proposed model by another model with chance constraints, which can be solved based on two settings of the demand information in each affected area: (i) the demand distribution is given; and (ii) the partial demand information, e.g., the mean, the variance, and the support, is given. We use a case study of the 2014 Typhoon Rammasun to illustrate the application of the model. Computational results demonstrate the effectiveness of the solution approaches and show that the chance-constrained stochastic programming models are superior to the deterministic model for humanitarian relief network design.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/24725854.2022.2074577</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2472-5854
ispartof IIE transactions, 2023-03, Vol.55 (3), p.301-313
issn 2472-5854
2472-5862
language eng
recordid cdi_crossref_primary_10_1080_24725854_2022_2074577
source Taylor and Francis Science and Technology Collection
subjects Case studies
chance-constrained stochastic programming
Constraint modelling
Demand
Disaster relief
humanitarian relief network design
Humanitarianism
Network design
Optimization
Responsiveness maximization
Stochastic models
Stochastic programming
title Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Humanitarian%20relief%20network%20design:%20Responsiveness%20maximization%20and%20a%20case%20study%20of%20Typhoon%20Rammasun&rft.jtitle=IIE%20transactions&rft.au=Shu,%20Jia&rft.date=2023-03-04&rft.volume=55&rft.issue=3&rft.spage=301&rft.epage=313&rft.pages=301-313&rft.issn=2472-5854&rft.eissn=2472-5862&rft_id=info:doi/10.1080/24725854.2022.2074577&rft_dat=%3Cproquest_cross%3E2753442698%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2753442698&rft_id=info:pmid/&rfr_iscdi=true