Loading…
Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun
In this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventor...
Saved in:
Published in: | IIE transactions 2023-03, Vol.55 (3), p.301-313 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413 |
container_end_page | 313 |
container_issue | 3 |
container_start_page | 301 |
container_title | IIE transactions |
container_volume | 55 |
creator | Shu, Jia Song, Miao Wang, Beilun Yang, Jing Zhu, Shaowen |
description | In this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventory pre-positioning, and relief facility to affected area assignment so as to maximize the responsiveness. The problem is formulated as a chance-constrained stochastic programming model in which a joint chance constraint is utilized to measure the responsiveness of the humanitarian relief network. We approximate the proposed model by another model with chance constraints, which can be solved based on two settings of the demand information in each affected area: (i) the demand distribution is given; and (ii) the partial demand information, e.g., the mean, the variance, and the support, is given. We use a case study of the 2014 Typhoon Rammasun to illustrate the application of the model. Computational results demonstrate the effectiveness of the solution approaches and show that the chance-constrained stochastic programming models are superior to the deterministic model for humanitarian relief network design. |
doi_str_mv | 10.1080/24725854.2022.2074577 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_24725854_2022_2074577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753442698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsGg_ghDw3Jo_m2zWk1LUCgWh1HOYbhJN3U3WZFetn94trR69zAxv3ryBX5ZdEDwlWOIrmheUS55PKaZ0KEXOi-IoG-30CZeCHv_NPD_NxiltMMak4ByLcpTped-Adx1EBx5FUztjkTfdZ4hvSJvkXvw1WprUBp_ch_EmJdTAl2vcN3QueAReI0AVJINS1-stChattu1rGHZLaBpIvT_PTizUyYwP_Sx7vr9bzeaTxdPD4-x2MakYk90E9JpDUTFKBBFaWroGazQzWJI1plYIRo0RVkvCaDFIuqQY2LqSXNBS54SdZZf73DaG996kTm1CH_3wUtGCszynopSDi-9dVQwpRWNVG10DcasIVjum6pep2jFVB6bD3c3-znkbYgMDolqrDrZ1iDaCr1xS7P-IH4vSfsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753442698</pqid></control><display><type>article</type><title>Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun</title><source>Taylor and Francis Science and Technology Collection</source><creator>Shu, Jia ; Song, Miao ; Wang, Beilun ; Yang, Jing ; Zhu, Shaowen</creator><creatorcontrib>Shu, Jia ; Song, Miao ; Wang, Beilun ; Yang, Jing ; Zhu, Shaowen</creatorcontrib><description>In this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventory pre-positioning, and relief facility to affected area assignment so as to maximize the responsiveness. The problem is formulated as a chance-constrained stochastic programming model in which a joint chance constraint is utilized to measure the responsiveness of the humanitarian relief network. We approximate the proposed model by another model with chance constraints, which can be solved based on two settings of the demand information in each affected area: (i) the demand distribution is given; and (ii) the partial demand information, e.g., the mean, the variance, and the support, is given. We use a case study of the 2014 Typhoon Rammasun to illustrate the application of the model. Computational results demonstrate the effectiveness of the solution approaches and show that the chance-constrained stochastic programming models are superior to the deterministic model for humanitarian relief network design.</description><identifier>ISSN: 2472-5854</identifier><identifier>EISSN: 2472-5862</identifier><identifier>DOI: 10.1080/24725854.2022.2074577</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Case studies ; chance-constrained stochastic programming ; Constraint modelling ; Demand ; Disaster relief ; humanitarian relief network design ; Humanitarianism ; Network design ; Optimization ; Responsiveness maximization ; Stochastic models ; Stochastic programming</subject><ispartof>IIE transactions, 2023-03, Vol.55 (3), p.301-313</ispartof><rights>Copyright © 2022 "IISE" 2022</rights><rights>Copyright © 2022 “IISE”</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413</citedby><cites>FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shu, Jia</creatorcontrib><creatorcontrib>Song, Miao</creatorcontrib><creatorcontrib>Wang, Beilun</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Zhu, Shaowen</creatorcontrib><title>Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun</title><title>IIE transactions</title><description>In this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventory pre-positioning, and relief facility to affected area assignment so as to maximize the responsiveness. The problem is formulated as a chance-constrained stochastic programming model in which a joint chance constraint is utilized to measure the responsiveness of the humanitarian relief network. We approximate the proposed model by another model with chance constraints, which can be solved based on two settings of the demand information in each affected area: (i) the demand distribution is given; and (ii) the partial demand information, e.g., the mean, the variance, and the support, is given. We use a case study of the 2014 Typhoon Rammasun to illustrate the application of the model. Computational results demonstrate the effectiveness of the solution approaches and show that the chance-constrained stochastic programming models are superior to the deterministic model for humanitarian relief network design.</description><subject>Case studies</subject><subject>chance-constrained stochastic programming</subject><subject>Constraint modelling</subject><subject>Demand</subject><subject>Disaster relief</subject><subject>humanitarian relief network design</subject><subject>Humanitarianism</subject><subject>Network design</subject><subject>Optimization</subject><subject>Responsiveness maximization</subject><subject>Stochastic models</subject><subject>Stochastic programming</subject><issn>2472-5854</issn><issn>2472-5862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxRdRsGg_ghDw3Jo_m2zWk1LUCgWh1HOYbhJN3U3WZFetn94trR69zAxv3ryBX5ZdEDwlWOIrmheUS55PKaZ0KEXOi-IoG-30CZeCHv_NPD_NxiltMMak4ByLcpTped-Adx1EBx5FUztjkTfdZ4hvSJvkXvw1WprUBp_ch_EmJdTAl2vcN3QueAReI0AVJINS1-stChattu1rGHZLaBpIvT_PTizUyYwP_Sx7vr9bzeaTxdPD4-x2MakYk90E9JpDUTFKBBFaWroGazQzWJI1plYIRo0RVkvCaDFIuqQY2LqSXNBS54SdZZf73DaG996kTm1CH_3wUtGCszynopSDi-9dVQwpRWNVG10DcasIVjum6pep2jFVB6bD3c3-znkbYgMDolqrDrZ1iDaCr1xS7P-IH4vSfsc</recordid><startdate>20230304</startdate><enddate>20230304</enddate><creator>Shu, Jia</creator><creator>Song, Miao</creator><creator>Wang, Beilun</creator><creator>Yang, Jing</creator><creator>Zhu, Shaowen</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20230304</creationdate><title>Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun</title><author>Shu, Jia ; Song, Miao ; Wang, Beilun ; Yang, Jing ; Zhu, Shaowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Case studies</topic><topic>chance-constrained stochastic programming</topic><topic>Constraint modelling</topic><topic>Demand</topic><topic>Disaster relief</topic><topic>humanitarian relief network design</topic><topic>Humanitarianism</topic><topic>Network design</topic><topic>Optimization</topic><topic>Responsiveness maximization</topic><topic>Stochastic models</topic><topic>Stochastic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Jia</creatorcontrib><creatorcontrib>Song, Miao</creatorcontrib><creatorcontrib>Wang, Beilun</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Zhu, Shaowen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IIE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Jia</au><au>Song, Miao</au><au>Wang, Beilun</au><au>Yang, Jing</au><au>Zhu, Shaowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun</atitle><jtitle>IIE transactions</jtitle><date>2023-03-04</date><risdate>2023</risdate><volume>55</volume><issue>3</issue><spage>301</spage><epage>313</epage><pages>301-313</pages><issn>2472-5854</issn><eissn>2472-5862</eissn><abstract>In this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventory pre-positioning, and relief facility to affected area assignment so as to maximize the responsiveness. The problem is formulated as a chance-constrained stochastic programming model in which a joint chance constraint is utilized to measure the responsiveness of the humanitarian relief network. We approximate the proposed model by another model with chance constraints, which can be solved based on two settings of the demand information in each affected area: (i) the demand distribution is given; and (ii) the partial demand information, e.g., the mean, the variance, and the support, is given. We use a case study of the 2014 Typhoon Rammasun to illustrate the application of the model. Computational results demonstrate the effectiveness of the solution approaches and show that the chance-constrained stochastic programming models are superior to the deterministic model for humanitarian relief network design.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/24725854.2022.2074577</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2472-5854 |
ispartof | IIE transactions, 2023-03, Vol.55 (3), p.301-313 |
issn | 2472-5854 2472-5862 |
language | eng |
recordid | cdi_crossref_primary_10_1080_24725854_2022_2074577 |
source | Taylor and Francis Science and Technology Collection |
subjects | Case studies chance-constrained stochastic programming Constraint modelling Demand Disaster relief humanitarian relief network design Humanitarianism Network design Optimization Responsiveness maximization Stochastic models Stochastic programming |
title | Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Humanitarian%20relief%20network%20design:%20Responsiveness%20maximization%20and%20a%20case%20study%20of%20Typhoon%20Rammasun&rft.jtitle=IIE%20transactions&rft.au=Shu,%20Jia&rft.date=2023-03-04&rft.volume=55&rft.issue=3&rft.spage=301&rft.epage=313&rft.pages=301-313&rft.issn=2472-5854&rft.eissn=2472-5862&rft_id=info:doi/10.1080/24725854.2022.2074577&rft_dat=%3Cproquest_cross%3E2753442698%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-adb5a7c321616d8f2bafed3e081b02f6632ee6fd813271b0d920a3bc85629d413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2753442698&rft_id=info:pmid/&rfr_iscdi=true |