Loading…
Fast algorithm for predicting the production process performance in flexible production lines with delayed differentiation
In flexible manufacturing lines with delayed differentiation, the production process may fluctuate sharply when a control action is performed. As a result, the steady-state analysis algorithm is inaccurate for these production lines, and transient behavior studies have become crucial. However, dynam...
Saved in:
Published in: | IIE transactions 2024-09, Vol.ahead-of-print (ahead-of-print), p.1-13 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In flexible manufacturing lines with delayed differentiation, the production process may fluctuate sharply when a control action is performed. As a result, the steady-state analysis algorithm is inaccurate for these production lines, and transient behavior studies have become crucial. However, dynamic analysis remains unexplored compared with the well-established theoretical system of steady-state analysis. Therefore, in this study, we propose a fast algorithm for predicting the production process performance in the delayed differentiation-based flexible production line under operation control. We first formulate practical problems existing in the auto, food, and furniture industries into a mathematical formation. Then, we offer closed-form formulae for predicting the production process performance using the built stochastic model in the production line with three machines. We also propose an algorithm to predict the performance of a production line having more than three machines. The proposed methods were verified to be highly accurate through comparison experiments. In terms of theoretical contributions, this study offers a research foundation for other transient-based studies. From a practical perspective, the proposed algorithms can be employed to predict the production process performance of processing lines under production control in advance. |
---|---|
ISSN: | 2472-5854 2472-5862 |
DOI: | 10.1080/24725854.2022.2126564 |