Loading…

NITRATE REDUCTASE AND GLUTAMATE DEHYDROGENASE ACTIVITIES OF RESISTANT AND SENSITIVE CULTIVARS OF WHEAT AND BARLEY UNDER BORON TOXICITY

In this study, changes in activity of key enzymes of nitrogen assimilation, namely nitrate reductase and glutamate dehydrogenase upon boron (B) toxicity in wheat (Triticum aestivum) and barley (Hordeum vulgare) cultivars were investigated. Ten-day-old seedlings were exposed to 10 mM boric acid for a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant nutrition 2002-08, Vol.25 (8), p.1829-1837
Main Authors: Mahboobi, Homa, Yücel, Meral, Öktem, Hüseyin Avni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, changes in activity of key enzymes of nitrogen assimilation, namely nitrate reductase and glutamate dehydrogenase upon boron (B) toxicity in wheat (Triticum aestivum) and barley (Hordeum vulgare) cultivars were investigated. Ten-day-old seedlings were exposed to 10 mM boric acid for a duration of five days. Plants growing on the nutrient solutions and receiving no excess B, were maintained as controls. All experiments were conducted on leaf and root tissues of control and B-treated seedlings of B-tolerant and B-sensitive cultivars. For estimation of activity of nitrate reductase, an in vivo assay was used. Compared to controls (no B treatment) activity of nitrate reductase tended to decrease (15-17%) following B toxicity in root and leaf tissues of all cultivars, however, no significant difference was observed between resistant and sensitive cultivars. Boron stress increased activity of glutamate dehydrogenase in roots and leaves of all cultivars by an average of 81% and 30%, respectively. Compared to sensitive variety, the boron tolerant wheat variety exhibited a significantly higher increase in shoot tissue GDH activity, whereas no significant difference was observed in root tissues. It was concluded that, the increase in activity of glutamate dehydrogenase could be an adaptive mechanism in these species and possibly plays a protective role under boron-stress conditions.
ISSN:0190-4167
1532-4087
DOI:10.1081/PLN-120006060