Loading…
A Comparison of Two Alternative Approaches to Modeling Level Shifts in the Presence of Outliers
We study alternative models for capturing abrupt structural changes (level shifts) in a times series. The problem is confounded by the presence of transient outliers. We compare the performance of non-Gaussian time-varying parameter models and multiprocess mixture models within a Monte Carlo experim...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2004-01, Vol.33 (3), p.661-671 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study alternative models for capturing abrupt structural changes (level shifts) in a times series. The problem is confounded by the presence of transient outliers. We compare the performance of non-Gaussian time-varying parameter models and multiprocess mixture models within a Monte Carlo experimental setup. Our findings suggest that once we incorporate shocks with thick-tailed probability distributions, the superiority of the multiprocess mixture models over the time-varying parameter models, reported in an earlier study, disappears. The behavior of the two models, both in adapting to level shifts and in reacting to transient outliers, is very similar. |
---|---|
ISSN: | 0361-0918 1532-4141 |
DOI: | 10.1081/SAC-200033317 |