Loading…
Chandra Observations of Low Velocity Dispersion Groups
Deviations of galaxy groups from cluster scaling relations can be understood in terms of an excess of entropy in groups. The main effect of this excess is to reduce the density and thus the luminosity of the intragroup gas. Given this, groups should also show a steep relationship between X-ray lumin...
Saved in:
Published in: | The Astrophysical journal 2005-01, Vol.618 (2), p.679-691 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deviations of galaxy groups from cluster scaling relations can be understood in terms of an excess of entropy in groups. The main effect of this excess is to reduce the density and thus the luminosity of the intragroup gas. Given this, groups should also show a steep relationship between X-ray luminosity and velocity dispersion. However, previous work suggests that this is not the case, with many measuring slopes flatter than the cluster relation. Examining the group L sub(X)- sigma relation shows that much of the flattening is caused by a small subset of groups that show very high X-ray luminosities for their velocity dispersions (or vice versa). Detailed Chandra study of two such groups shows that earlier ROSAT results were subject to significant ( similar to 30%-40%) point-source contamination but confirm that a significant hot intergalactic medium is present in these groups, although these are two of the coolest systems in which intergalactic X-ray emission has been detected. Their X-ray properties are shown to be broadly consistent with those of other galaxy groups, although the gas entropy in NGC 1587 is unusually low, and its X-ray luminosity is correspondingly high for its temperature when compared with most groups. This leads us to suggest that the velocity dispersion in these systems has been reduced in some way, and we consider how this might have come about. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1086/426009 |