Loading…

Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. III. Diffraction Effects and Coronagraph Design

Properly apodized pupils can deliver point-spread functions (PSFs) free of Airy rings and are suitable for high dynamical range imaging of extrasolar terrestrial planets (ETPs). To reach this goal, classical pupil apodization (CPA) unfortunately requires most of the light gathered by the telescope t...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2006-06, Vol.644 (2), p.1246-1257
Main Authors: Pluzhnik, Eugene A, Guyon, Olivier, Ridgway, Stephen T, Martinache, Frantz, Woodruff, Robert A, Blain, Celia, Galicher, Raphael
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Properly apodized pupils can deliver point-spread functions (PSFs) free of Airy rings and are suitable for high dynamical range imaging of extrasolar terrestrial planets (ETPs). To reach this goal, classical pupil apodization (CPA) unfortunately requires most of the light gathered by the telescope to be absorbed, resulting in poor throughput and low angular resolution. Phase-induced amplitude apodization (PIAA) of the telescope pupil combines the advantages of classical pupil apodization (particularly low sensitivity to low-order aberrations) with full throughput, no loss of angular resolution and little chromaticity, which makes it, theoretically, an extremely attractive coronagraph for direct imaging of ETPs. The two most challenging aspects of this technique are (l)the difficulty of polishing the required optics shapes and (2) diffraction propagation effects, which, because of their chromaticity, can decrease the spectral bandwidth of the coronagraph. We show that a properly designed hybrid system combining classical apodization with the PIAA technique can solve both problems simultaneously. For such a system, the optics shapes can be well within today's optics manufacturing capabilities, and the 10 super(-10) PSF contrast at -1.5 l/D required for efficient imaging of ETPs can be maintained over the whole visible spectrum. This updated design of the PIAA coronagraph maintains the high performance of the earlier design, since only a small part of the light is lost in the classical apodizer(s).
ISSN:0004-637X
1538-4357
DOI:10.1086/503829