Loading…

Timing and Evolution of Cretaceous Island Arc Magmatism in Central Cuba: Implications for the History of Arc Systems in the Northwestern Caribbean

SHRIMP and conventional zircon dating place temporal constraints on the evolution of the Cretaceous Volcanic Arc system in central Cuba. The arc has a consistent stratigraphy across strike, with the oldest and deepest rocks in the south (in tectonic contact with the ∼5–10-km-wide Mabujina Amphibolit...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geology 2011-11, Vol.119 (6), p.619-640
Main Authors: Rojas-Agramonte, Y., Kröner, A., García-Casco, A., Somin, M., Iturralde-Vinent, M., Mattinson, J. M., Millán Trujillo, G., Sukar, K., Pérez Rodríguez, M., Carrasquilla, S., Wingate, M. T. D., Liu, D. Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SHRIMP and conventional zircon dating place temporal constraints on the evolution of the Cretaceous Volcanic Arc system in central Cuba. The arc has a consistent stratigraphy across strike, with the oldest and deepest rocks in the south (in tectonic contact with the ∼5–10-km-wide Mabujina Amphibolite Complex [MAC]) and younger rocks in the north. The MAC is thought to represent the deepest exposed section of the Cretaceous Volcanic Arc and its oceanic basement in Cuba. We undertook a single zircon geochronological study of five gneisses and two amphibolites from the MAC and seven rocks from the Manicaragua Batholith, which intrudes both the MAC and the Cretaceous Volcanic Arc. A SHRIMP zircon age of Ma for a trondhjemitic orthogneiss (MAC) from the Jicaya River dates the oldest phase of granitoid magmatism in this area and the entire Caribbean (Antillean) region. A tonalitic gneiss collected near the previous sample yielded an age of Ma, and a further tonalitic gneiss had an age of Ma, with one inherited zircon at Ma. Two trondhjemitic orthogneisses from the central part of the MAC yielded ages of and Ma, whereas two amphibolites from the eastern part of the complex provided similar ages of ca. 93 Ma and zircon inheritance at 315, 471, 903, and 1059 Ma. Two weakly foliated Manicaragua granitoids from the eastern part of the massif provided ages of and Ma, whereas five unfoliated granitoid samples from the central and eastern part of the massif yielded ages of , , , , and Ma. Our age data support the view that the Mabujina Protholiths are exotic and formed somewhere NNW along strike of the nonmetamorphosed Cuban arc since pre–Middle Hauterivian time (before ∼133 Ma). The MAC became part of the Cuban Volcanic Arc during the Turonian (ca. 90–93 Ma), when it was intruded by plutonic rocks of the Manicaragua Batholith (Turonian-Campanian; ca. 89–83 Ma). The geology and geochronology of central Cuba do not support the idea of a polarity reversal event at any stage of the Cretaceous Arc–building process. Because most of our dated samples come from the narrow Mabujina Belt, the polarity reversal model would imply that the axis of a newly developing arc (with opposite polarity) would spatially coincide with the older arc, which appears unlikely. Inherited Precambrian and Palaeozoic zircons in the MAC granitic rocks (similar to inherited zircon populations in the Guerrero terrane from central-western Mexico) suggest a Neocomian proximal setting close to a cratonic a
ISSN:0022-1376
1537-5269
DOI:10.1086/662033