Loading…
Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits
Understanding the patterns of genetic variation and constraint for continuous reaction norms, growth trajectories, and other function-valued traits is challenging. We describe and illustrate a recent analytical method, simple basis analysis (SBA), that uses the genetic variance-covariance (G) matrix...
Saved in:
Published in: | The American naturalist 2015-06, Vol.185 (6), p.E166-E181 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23 |
container_end_page | E181 |
container_issue | 6 |
container_start_page | E166 |
container_title | The American naturalist |
container_volume | 185 |
creator | Kingsolver, Joel G. Heckman, Nancy Zhang, Jonathan Carter, Patrick A. Knies, Jennifer L. Stinchcombe, John R. Meyer, Karin |
description | Understanding the patterns of genetic variation and constraint for continuous reaction norms, growth trajectories, and other function-valued traits is challenging. We describe and illustrate a recent analytical method, simple basis analysis (SBA), that uses the genetic variance-covariance (G) matrix to identify “simple” directions of genetic variation and genetic constraints that have straightforward biological interpretations. We discuss the parallels between the eigenvectors (principal components) identified by principal components analysis (PCA) and the simple basis (SB) vectors identified by SBA. We apply these methods to estimated G matrices obtained from 10 studies of thermal performance curves and growth curves. Our results suggest that variation in overall size across all ages represented most of the genetic variance in growth curves. In contrast, variation in overall performance across all temperatures represented less than one-third of the genetic variance in thermal performance curves in all cases, and genetic trade-offs between performance at higher versus lower temperatures were often important. The analyses also identify potential genetic constraints on patterns of early and later growth in growth curves. We suggest that SBA can be a useful complement or alternative to PCA for identifying biologically interpretable directions of genetic variation and constraint in function-valued traits. |
doi_str_mv | 10.1086/681083 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1086_681083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/681083</jstor_id><sourcerecordid>10.1086/681083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoOr5-ghQUcWG1SZomWcowPkBwoc62pGmqGTpNzUOYf29K1QFBdHUJ5-PknnsAOITZBcxYcVmwOPAGmECCaUowwptgkmUZTjOY0x2w69wiPnnOyTbYQYTzghVsAuY3qlNey2QurBZem-48edTLvtVS-9V5Iro6mb2bNgySsKtkajrnrdCdd0ljbHIdOjlo6Vy0QdXJU9S82wdbjWidOvice-D5evY0vU3vH27uplf3qcxx5lOOmeAUokZUHAlRN0zmTQURpRIRAnnDcsxkzTCsMC6kUIhWsKorQQnMmUJ4D5yNvr01b0E5Xy61k6ptRadMcCWkMT5jecH_RguGGKMED-jxD3Rhgu1ikIEiHOIc00idjpS0xjmrmrK3ehlvVMKsHEopx1IiePRpF6qlqr-xrxbWqwX5qqV4Mb1Vzq0_HX3Kvm4ievIPdJ1g4byxvy32AXVQq10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685913437</pqid></control><display><type>article</type><title>Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits</title><source>JSTOR Archival Journals</source><creator>Kingsolver, Joel G. ; Heckman, Nancy ; Zhang, Jonathan ; Carter, Patrick A. ; Knies, Jennifer L. ; Stinchcombe, John R. ; Meyer, Karin</creator><contributor>Troy Day ; Charles F. Baer</contributor><creatorcontrib>Kingsolver, Joel G. ; Heckman, Nancy ; Zhang, Jonathan ; Carter, Patrick A. ; Knies, Jennifer L. ; Stinchcombe, John R. ; Meyer, Karin ; Troy Day ; Charles F. Baer</creatorcontrib><description>Understanding the patterns of genetic variation and constraint for continuous reaction norms, growth trajectories, and other function-valued traits is challenging. We describe and illustrate a recent analytical method, simple basis analysis (SBA), that uses the genetic variance-covariance (G) matrix to identify “simple” directions of genetic variation and genetic constraints that have straightforward biological interpretations. We discuss the parallels between the eigenvectors (principal components) identified by principal components analysis (PCA) and the simple basis (SB) vectors identified by SBA. We apply these methods to estimated G matrices obtained from 10 studies of thermal performance curves and growth curves. Our results suggest that variation in overall size across all ages represented most of the genetic variance in growth curves. In contrast, variation in overall performance across all temperatures represented less than one-third of the genetic variance in thermal performance curves in all cases, and genetic trade-offs between performance at higher versus lower temperatures were often important. The analyses also identify potential genetic constraints on patterns of early and later growth in growth curves. We suggest that SBA can be a useful complement or alternative to PCA for identifying biologically interpretable directions of genetic variation and constraint in function-valued traits.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/681083</identifier><identifier>PMID: 25996868</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: University of Chicago Press</publisher><subject>Age Factors ; Bacteriophages ; Biological Evolution ; E-Article ; Eigenvectors ; Evolutionary biology ; Evolutionary genetics ; Gene-Environment Interaction ; Genetic diversity ; Genetic variance ; Genetic Variation ; Genetic vectors ; Genotypes ; Growth - genetics ; Low temperature ; Models, Biological ; Phenotype ; Phenotypic traits ; Physical growth ; Principal Component Analysis ; Principal components analysis ; Quantitative Trait, Heritable ; Temperature</subject><ispartof>The American naturalist, 2015-06, Vol.185 (6), p.E166-E181</ispartof><rights>2015 by The University of Chicago. All rights reserved.</rights><rights>Copyright University of Chicago, acting through its Press Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23</citedby><cites>FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25996868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Troy Day</contributor><contributor>Charles F. Baer</contributor><creatorcontrib>Kingsolver, Joel G.</creatorcontrib><creatorcontrib>Heckman, Nancy</creatorcontrib><creatorcontrib>Zhang, Jonathan</creatorcontrib><creatorcontrib>Carter, Patrick A.</creatorcontrib><creatorcontrib>Knies, Jennifer L.</creatorcontrib><creatorcontrib>Stinchcombe, John R.</creatorcontrib><creatorcontrib>Meyer, Karin</creatorcontrib><title>Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>Understanding the patterns of genetic variation and constraint for continuous reaction norms, growth trajectories, and other function-valued traits is challenging. We describe and illustrate a recent analytical method, simple basis analysis (SBA), that uses the genetic variance-covariance (G) matrix to identify “simple” directions of genetic variation and genetic constraints that have straightforward biological interpretations. We discuss the parallels between the eigenvectors (principal components) identified by principal components analysis (PCA) and the simple basis (SB) vectors identified by SBA. We apply these methods to estimated G matrices obtained from 10 studies of thermal performance curves and growth curves. Our results suggest that variation in overall size across all ages represented most of the genetic variance in growth curves. In contrast, variation in overall performance across all temperatures represented less than one-third of the genetic variance in thermal performance curves in all cases, and genetic trade-offs between performance at higher versus lower temperatures were often important. The analyses also identify potential genetic constraints on patterns of early and later growth in growth curves. We suggest that SBA can be a useful complement or alternative to PCA for identifying biologically interpretable directions of genetic variation and constraint in function-valued traits.</description><subject>Age Factors</subject><subject>Bacteriophages</subject><subject>Biological Evolution</subject><subject>E-Article</subject><subject>Eigenvectors</subject><subject>Evolutionary biology</subject><subject>Evolutionary genetics</subject><subject>Gene-Environment Interaction</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genetic vectors</subject><subject>Genotypes</subject><subject>Growth - genetics</subject><subject>Low temperature</subject><subject>Models, Biological</subject><subject>Phenotype</subject><subject>Phenotypic traits</subject><subject>Physical growth</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Quantitative Trait, Heritable</subject><subject>Temperature</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLxDAUhYMoOr5-ghQUcWG1SZomWcowPkBwoc62pGmqGTpNzUOYf29K1QFBdHUJ5-PknnsAOITZBcxYcVmwOPAGmECCaUowwptgkmUZTjOY0x2w69wiPnnOyTbYQYTzghVsAuY3qlNey2QurBZem-48edTLvtVS-9V5Iro6mb2bNgySsKtkajrnrdCdd0ljbHIdOjlo6Vy0QdXJU9S82wdbjWidOvice-D5evY0vU3vH27uplf3qcxx5lOOmeAUokZUHAlRN0zmTQURpRIRAnnDcsxkzTCsMC6kUIhWsKorQQnMmUJ4D5yNvr01b0E5Xy61k6ptRadMcCWkMT5jecH_RguGGKMED-jxD3Rhgu1ikIEiHOIc00idjpS0xjmrmrK3ehlvVMKsHEopx1IiePRpF6qlqr-xrxbWqwX5qqV4Mb1Vzq0_HX3Kvm4ievIPdJ1g4byxvy32AXVQq10</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Kingsolver, Joel G.</creator><creator>Heckman, Nancy</creator><creator>Zhang, Jonathan</creator><creator>Carter, Patrick A.</creator><creator>Knies, Jennifer L.</creator><creator>Stinchcombe, John R.</creator><creator>Meyer, Karin</creator><general>University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits</title><author>Kingsolver, Joel G. ; Heckman, Nancy ; Zhang, Jonathan ; Carter, Patrick A. ; Knies, Jennifer L. ; Stinchcombe, John R. ; Meyer, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Age Factors</topic><topic>Bacteriophages</topic><topic>Biological Evolution</topic><topic>E-Article</topic><topic>Eigenvectors</topic><topic>Evolutionary biology</topic><topic>Evolutionary genetics</topic><topic>Gene-Environment Interaction</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genetic vectors</topic><topic>Genotypes</topic><topic>Growth - genetics</topic><topic>Low temperature</topic><topic>Models, Biological</topic><topic>Phenotype</topic><topic>Phenotypic traits</topic><topic>Physical growth</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Quantitative Trait, Heritable</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingsolver, Joel G.</creatorcontrib><creatorcontrib>Heckman, Nancy</creatorcontrib><creatorcontrib>Zhang, Jonathan</creatorcontrib><creatorcontrib>Carter, Patrick A.</creatorcontrib><creatorcontrib>Knies, Jennifer L.</creatorcontrib><creatorcontrib>Stinchcombe, John R.</creatorcontrib><creatorcontrib>Meyer, Karin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingsolver, Joel G.</au><au>Heckman, Nancy</au><au>Zhang, Jonathan</au><au>Carter, Patrick A.</au><au>Knies, Jennifer L.</au><au>Stinchcombe, John R.</au><au>Meyer, Karin</au><au>Troy Day</au><au>Charles F. Baer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>185</volume><issue>6</issue><spage>E166</spage><epage>E181</epage><pages>E166-E181</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>Understanding the patterns of genetic variation and constraint for continuous reaction norms, growth trajectories, and other function-valued traits is challenging. We describe and illustrate a recent analytical method, simple basis analysis (SBA), that uses the genetic variance-covariance (G) matrix to identify “simple” directions of genetic variation and genetic constraints that have straightforward biological interpretations. We discuss the parallels between the eigenvectors (principal components) identified by principal components analysis (PCA) and the simple basis (SB) vectors identified by SBA. We apply these methods to estimated G matrices obtained from 10 studies of thermal performance curves and growth curves. Our results suggest that variation in overall size across all ages represented most of the genetic variance in growth curves. In contrast, variation in overall performance across all temperatures represented less than one-third of the genetic variance in thermal performance curves in all cases, and genetic trade-offs between performance at higher versus lower temperatures were often important. The analyses also identify potential genetic constraints on patterns of early and later growth in growth curves. We suggest that SBA can be a useful complement or alternative to PCA for identifying biologically interpretable directions of genetic variation and constraint in function-valued traits.</abstract><cop>United States</cop><pub>University of Chicago Press</pub><pmid>25996868</pmid><doi>10.1086/681083</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0147 |
ispartof | The American naturalist, 2015-06, Vol.185 (6), p.E166-E181 |
issn | 0003-0147 1537-5323 |
language | eng |
recordid | cdi_crossref_primary_10_1086_681083 |
source | JSTOR Archival Journals |
subjects | Age Factors Bacteriophages Biological Evolution E-Article Eigenvectors Evolutionary biology Evolutionary genetics Gene-Environment Interaction Genetic diversity Genetic variance Genetic Variation Genetic vectors Genotypes Growth - genetics Low temperature Models, Biological Phenotype Phenotypic traits Physical growth Principal Component Analysis Principal components analysis Quantitative Trait, Heritable Temperature |
title | Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Variation,%20Simplicity,%20and%20Evolutionary%20Constraints%20for%20Function-Valued%20Traits&rft.jtitle=The%20American%20naturalist&rft.au=Kingsolver,%20Joel%20G.&rft.date=2015-06-01&rft.volume=185&rft.issue=6&rft.spage=E166&rft.epage=E181&rft.pages=E166-E181&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/681083&rft_dat=%3Cjstor_cross%3E10.1086/681083%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685913437&rft_id=info:pmid/25996868&rft_jstor_id=10.1086/681083&rfr_iscdi=true |