Loading…

Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits

Understanding the patterns of genetic variation and constraint for continuous reaction norms, growth trajectories, and other function-valued traits is challenging. We describe and illustrate a recent analytical method, simple basis analysis (SBA), that uses the genetic variance-covariance (G) matrix...

Full description

Saved in:
Bibliographic Details
Published in:The American naturalist 2015-06, Vol.185 (6), p.E166-E181
Main Authors: Kingsolver, Joel G., Heckman, Nancy, Zhang, Jonathan, Carter, Patrick A., Knies, Jennifer L., Stinchcombe, John R., Meyer, Karin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23
cites cdi_FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23
container_end_page E181
container_issue 6
container_start_page E166
container_title The American naturalist
container_volume 185
creator Kingsolver, Joel G.
Heckman, Nancy
Zhang, Jonathan
Carter, Patrick A.
Knies, Jennifer L.
Stinchcombe, John R.
Meyer, Karin
description Understanding the patterns of genetic variation and constraint for continuous reaction norms, growth trajectories, and other function-valued traits is challenging. We describe and illustrate a recent analytical method, simple basis analysis (SBA), that uses the genetic variance-covariance (G) matrix to identify “simple” directions of genetic variation and genetic constraints that have straightforward biological interpretations. We discuss the parallels between the eigenvectors (principal components) identified by principal components analysis (PCA) and the simple basis (SB) vectors identified by SBA. We apply these methods to estimated G matrices obtained from 10 studies of thermal performance curves and growth curves. Our results suggest that variation in overall size across all ages represented most of the genetic variance in growth curves. In contrast, variation in overall performance across all temperatures represented less than one-third of the genetic variance in thermal performance curves in all cases, and genetic trade-offs between performance at higher versus lower temperatures were often important. The analyses also identify potential genetic constraints on patterns of early and later growth in growth curves. We suggest that SBA can be a useful complement or alternative to PCA for identifying biologically interpretable directions of genetic variation and constraint in function-valued traits.
doi_str_mv 10.1086/681083
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1086_681083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/681083</jstor_id><sourcerecordid>10.1086/681083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoOr5-ghQUcWG1SZomWcowPkBwoc62pGmqGTpNzUOYf29K1QFBdHUJ5-PknnsAOITZBcxYcVmwOPAGmECCaUowwptgkmUZTjOY0x2w69wiPnnOyTbYQYTzghVsAuY3qlNey2QurBZem-48edTLvtVS-9V5Iro6mb2bNgySsKtkajrnrdCdd0ljbHIdOjlo6Vy0QdXJU9S82wdbjWidOvice-D5evY0vU3vH27uplf3qcxx5lOOmeAUokZUHAlRN0zmTQURpRIRAnnDcsxkzTCsMC6kUIhWsKorQQnMmUJ4D5yNvr01b0E5Xy61k6ptRadMcCWkMT5jecH_RguGGKMED-jxD3Rhgu1ikIEiHOIc00idjpS0xjmrmrK3ehlvVMKsHEopx1IiePRpF6qlqr-xrxbWqwX5qqV4Mb1Vzq0_HX3Kvm4ievIPdJ1g4byxvy32AXVQq10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685913437</pqid></control><display><type>article</type><title>Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits</title><source>JSTOR Archival Journals</source><creator>Kingsolver, Joel G. ; Heckman, Nancy ; Zhang, Jonathan ; Carter, Patrick A. ; Knies, Jennifer L. ; Stinchcombe, John R. ; Meyer, Karin</creator><contributor>Troy Day ; Charles F. Baer</contributor><creatorcontrib>Kingsolver, Joel G. ; Heckman, Nancy ; Zhang, Jonathan ; Carter, Patrick A. ; Knies, Jennifer L. ; Stinchcombe, John R. ; Meyer, Karin ; Troy Day ; Charles F. Baer</creatorcontrib><description>Understanding the patterns of genetic variation and constraint for continuous reaction norms, growth trajectories, and other function-valued traits is challenging. We describe and illustrate a recent analytical method, simple basis analysis (SBA), that uses the genetic variance-covariance (G) matrix to identify “simple” directions of genetic variation and genetic constraints that have straightforward biological interpretations. We discuss the parallels between the eigenvectors (principal components) identified by principal components analysis (PCA) and the simple basis (SB) vectors identified by SBA. We apply these methods to estimated G matrices obtained from 10 studies of thermal performance curves and growth curves. Our results suggest that variation in overall size across all ages represented most of the genetic variance in growth curves. In contrast, variation in overall performance across all temperatures represented less than one-third of the genetic variance in thermal performance curves in all cases, and genetic trade-offs between performance at higher versus lower temperatures were often important. The analyses also identify potential genetic constraints on patterns of early and later growth in growth curves. We suggest that SBA can be a useful complement or alternative to PCA for identifying biologically interpretable directions of genetic variation and constraint in function-valued traits.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/681083</identifier><identifier>PMID: 25996868</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: University of Chicago Press</publisher><subject>Age Factors ; Bacteriophages ; Biological Evolution ; E-Article ; Eigenvectors ; Evolutionary biology ; Evolutionary genetics ; Gene-Environment Interaction ; Genetic diversity ; Genetic variance ; Genetic Variation ; Genetic vectors ; Genotypes ; Growth - genetics ; Low temperature ; Models, Biological ; Phenotype ; Phenotypic traits ; Physical growth ; Principal Component Analysis ; Principal components analysis ; Quantitative Trait, Heritable ; Temperature</subject><ispartof>The American naturalist, 2015-06, Vol.185 (6), p.E166-E181</ispartof><rights>2015 by The University of Chicago. All rights reserved.</rights><rights>Copyright University of Chicago, acting through its Press Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23</citedby><cites>FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25996868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Troy Day</contributor><contributor>Charles F. Baer</contributor><creatorcontrib>Kingsolver, Joel G.</creatorcontrib><creatorcontrib>Heckman, Nancy</creatorcontrib><creatorcontrib>Zhang, Jonathan</creatorcontrib><creatorcontrib>Carter, Patrick A.</creatorcontrib><creatorcontrib>Knies, Jennifer L.</creatorcontrib><creatorcontrib>Stinchcombe, John R.</creatorcontrib><creatorcontrib>Meyer, Karin</creatorcontrib><title>Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>Understanding the patterns of genetic variation and constraint for continuous reaction norms, growth trajectories, and other function-valued traits is challenging. We describe and illustrate a recent analytical method, simple basis analysis (SBA), that uses the genetic variance-covariance (G) matrix to identify “simple” directions of genetic variation and genetic constraints that have straightforward biological interpretations. We discuss the parallels between the eigenvectors (principal components) identified by principal components analysis (PCA) and the simple basis (SB) vectors identified by SBA. We apply these methods to estimated G matrices obtained from 10 studies of thermal performance curves and growth curves. Our results suggest that variation in overall size across all ages represented most of the genetic variance in growth curves. In contrast, variation in overall performance across all temperatures represented less than one-third of the genetic variance in thermal performance curves in all cases, and genetic trade-offs between performance at higher versus lower temperatures were often important. The analyses also identify potential genetic constraints on patterns of early and later growth in growth curves. We suggest that SBA can be a useful complement or alternative to PCA for identifying biologically interpretable directions of genetic variation and constraint in function-valued traits.</description><subject>Age Factors</subject><subject>Bacteriophages</subject><subject>Biological Evolution</subject><subject>E-Article</subject><subject>Eigenvectors</subject><subject>Evolutionary biology</subject><subject>Evolutionary genetics</subject><subject>Gene-Environment Interaction</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genetic vectors</subject><subject>Genotypes</subject><subject>Growth - genetics</subject><subject>Low temperature</subject><subject>Models, Biological</subject><subject>Phenotype</subject><subject>Phenotypic traits</subject><subject>Physical growth</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Quantitative Trait, Heritable</subject><subject>Temperature</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLxDAUhYMoOr5-ghQUcWG1SZomWcowPkBwoc62pGmqGTpNzUOYf29K1QFBdHUJ5-PknnsAOITZBcxYcVmwOPAGmECCaUowwptgkmUZTjOY0x2w69wiPnnOyTbYQYTzghVsAuY3qlNey2QurBZem-48edTLvtVS-9V5Iro6mb2bNgySsKtkajrnrdCdd0ljbHIdOjlo6Vy0QdXJU9S82wdbjWidOvice-D5evY0vU3vH27uplf3qcxx5lOOmeAUokZUHAlRN0zmTQURpRIRAnnDcsxkzTCsMC6kUIhWsKorQQnMmUJ4D5yNvr01b0E5Xy61k6ptRadMcCWkMT5jecH_RguGGKMED-jxD3Rhgu1ikIEiHOIc00idjpS0xjmrmrK3ehlvVMKsHEopx1IiePRpF6qlqr-xrxbWqwX5qqV4Mb1Vzq0_HX3Kvm4ievIPdJ1g4byxvy32AXVQq10</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Kingsolver, Joel G.</creator><creator>Heckman, Nancy</creator><creator>Zhang, Jonathan</creator><creator>Carter, Patrick A.</creator><creator>Knies, Jennifer L.</creator><creator>Stinchcombe, John R.</creator><creator>Meyer, Karin</creator><general>University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits</title><author>Kingsolver, Joel G. ; Heckman, Nancy ; Zhang, Jonathan ; Carter, Patrick A. ; Knies, Jennifer L. ; Stinchcombe, John R. ; Meyer, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Age Factors</topic><topic>Bacteriophages</topic><topic>Biological Evolution</topic><topic>E-Article</topic><topic>Eigenvectors</topic><topic>Evolutionary biology</topic><topic>Evolutionary genetics</topic><topic>Gene-Environment Interaction</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genetic vectors</topic><topic>Genotypes</topic><topic>Growth - genetics</topic><topic>Low temperature</topic><topic>Models, Biological</topic><topic>Phenotype</topic><topic>Phenotypic traits</topic><topic>Physical growth</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Quantitative Trait, Heritable</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingsolver, Joel G.</creatorcontrib><creatorcontrib>Heckman, Nancy</creatorcontrib><creatorcontrib>Zhang, Jonathan</creatorcontrib><creatorcontrib>Carter, Patrick A.</creatorcontrib><creatorcontrib>Knies, Jennifer L.</creatorcontrib><creatorcontrib>Stinchcombe, John R.</creatorcontrib><creatorcontrib>Meyer, Karin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingsolver, Joel G.</au><au>Heckman, Nancy</au><au>Zhang, Jonathan</au><au>Carter, Patrick A.</au><au>Knies, Jennifer L.</au><au>Stinchcombe, John R.</au><au>Meyer, Karin</au><au>Troy Day</au><au>Charles F. Baer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>185</volume><issue>6</issue><spage>E166</spage><epage>E181</epage><pages>E166-E181</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>Understanding the patterns of genetic variation and constraint for continuous reaction norms, growth trajectories, and other function-valued traits is challenging. We describe and illustrate a recent analytical method, simple basis analysis (SBA), that uses the genetic variance-covariance (G) matrix to identify “simple” directions of genetic variation and genetic constraints that have straightforward biological interpretations. We discuss the parallels between the eigenvectors (principal components) identified by principal components analysis (PCA) and the simple basis (SB) vectors identified by SBA. We apply these methods to estimated G matrices obtained from 10 studies of thermal performance curves and growth curves. Our results suggest that variation in overall size across all ages represented most of the genetic variance in growth curves. In contrast, variation in overall performance across all temperatures represented less than one-third of the genetic variance in thermal performance curves in all cases, and genetic trade-offs between performance at higher versus lower temperatures were often important. The analyses also identify potential genetic constraints on patterns of early and later growth in growth curves. We suggest that SBA can be a useful complement or alternative to PCA for identifying biologically interpretable directions of genetic variation and constraint in function-valued traits.</abstract><cop>United States</cop><pub>University of Chicago Press</pub><pmid>25996868</pmid><doi>10.1086/681083</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-0147
ispartof The American naturalist, 2015-06, Vol.185 (6), p.E166-E181
issn 0003-0147
1537-5323
language eng
recordid cdi_crossref_primary_10_1086_681083
source JSTOR Archival Journals
subjects Age Factors
Bacteriophages
Biological Evolution
E-Article
Eigenvectors
Evolutionary biology
Evolutionary genetics
Gene-Environment Interaction
Genetic diversity
Genetic variance
Genetic Variation
Genetic vectors
Genotypes
Growth - genetics
Low temperature
Models, Biological
Phenotype
Phenotypic traits
Physical growth
Principal Component Analysis
Principal components analysis
Quantitative Trait, Heritable
Temperature
title Genetic Variation, Simplicity, and Evolutionary Constraints for Function-Valued Traits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Variation,%20Simplicity,%20and%20Evolutionary%20Constraints%20for%20Function-Valued%20Traits&rft.jtitle=The%20American%20naturalist&rft.au=Kingsolver,%20Joel%20G.&rft.date=2015-06-01&rft.volume=185&rft.issue=6&rft.spage=E166&rft.epage=E181&rft.pages=E166-E181&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/681083&rft_dat=%3Cjstor_cross%3E10.1086/681083%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-938a9712fab92aadf8c4fb1277c25519f8438cd831b336cae27b1bdba75148e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685913437&rft_id=info:pmid/25996868&rft_jstor_id=10.1086/681083&rfr_iscdi=true