Loading…
Falling Transiting Extrasolar Giant Planets
We revisit the tidal stability of extrasolar systems harboring a transiting planet and demonstrate that, independently of any tidal model, none, but one (HAT-P-2b) of these planets has a tidal equilibrium state, which implies ultimately a collision of these objects with their host star. Consequently...
Saved in:
Published in: | Astrophysical journal. Letters 2009-02, Vol.692 (1), p.L9-L13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We revisit the tidal stability of extrasolar systems harboring a transiting planet and demonstrate that, independently of any tidal model, none, but one (HAT-P-2b) of these planets has a tidal equilibrium state, which implies ultimately a collision of these objects with their host star. Consequently, conventional circularization and synchronization timescales cannot be defined because the corresponding states do not represent the endpoint of the tidal evolution. Using numerical simulations of the coupled tidal equations for the spin and orbital parameters of each transiting planetary system, we confirm these predictions and show that the orbital eccentricity and the stellar obliquity do not follow the usually assumed exponential relaxation but instead decrease significantly, eventually reaching a zero value only during the final runaway merging of the planet with the star. The only characteristic evolution timescale of all rotational and orbital parameters is the lifetime of the system, which crucially depends on the magnitude of tidal dissipation within the star. These results imply that the nearly circular orbits of transiting planets and the alignment between the stellar spin axis and the planetary orbit are unlikely to be due to tidal dissipation. Other dissipative mechanisms, for instance interactions with the protoplanetary disk, must be invoked to explain these properties. |
---|---|
ISSN: | 1538-4357 0004-637X 2041-8205 1538-4357 2041-8213 |
DOI: | 10.1088/0004-637X/692/1/L9 |