Loading…

Energetic Protons, Radionuclides, and Magnetic Activity in Protostellar Disks

We calculate the location of the magnetically inactive dead zone in the minimum-mass protosolar disk, under ionization scenarios including stellar X-rays, long- or short-lived radionuclide decay, and energetic protons arriving from the general interstellar medium, from a nearby supernova explosion,...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2009-10, Vol.703 (2), p.2152-2159
Main Authors: Turner, N. J, Drake, J. F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We calculate the location of the magnetically inactive dead zone in the minimum-mass protosolar disk, under ionization scenarios including stellar X-rays, long- or short-lived radionuclide decay, and energetic protons arriving from the general interstellar medium, from a nearby supernova explosion, from the disk corona, or from the corona of the young star. The disk contains a dead zone in all scenarios except those with small dust grains removed and a fraction of the short-lived radionuclides remaining in the gas. All the cases without exception have an 'undead zone' where intermediate resistivities prevent magneto-rotational turbulence while allowing shear-generated large-scale magnetic fields. The mass column in the undead zone is typically greater than the column in the turbulent surface layers. The results support the idea that the dead and undead zones are robust consequences of cold, dusty gas with mass columns exceeding 1000 g cm-2.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/703/2/2152