Loading…
Optical Properties of the Ultraluminous X-Ray Source Holmberg IX X-1 and Its Stellar Environment
Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, a...
Saved in:
Published in: | The Astrophysical journal 2011-06, Vol.734 (1), p.23-jQuery1323907612317='48' |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V ~ 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M . The counterpart is more luminous than the other stars of the association, suggesting a non-negligible optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II Delta *l4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be 10 M , even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, 25 M , with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/734/1/23 |