Loading…
Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet
The coplanar microscale atmospheric pressure plasma jet (mu-APPJ) is a capacitively coupled radio frequency discharge (13.56 MHz, ~15 W rf power) designed for optimized optical diagnostic access. It is operated in a homogeneous glow mode with a noble gas flow (1.4 slm He) containing a small admixtur...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2008-10, Vol.41 (19), p.194006-194006 (6) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The coplanar microscale atmospheric pressure plasma jet (mu-APPJ) is a capacitively coupled radio frequency discharge (13.56 MHz, ~15 W rf power) designed for optimized optical diagnostic access. It is operated in a homogeneous glow mode with a noble gas flow (1.4 slm He) containing a small admixture of molecular oxygen (~0.5%). Ground state atomic oxygen densities in the effluent up to 2 X 1014 cm-3 are measured by two-photon absorption laser-induced fluorescence spectroscopy (TALIF) providing space resolved density maps. The quantitative calibration of the TALIF setup is performed by comparative measurements with xenon. A maximum of the atomic oxygen density is observed for 0.6% molecular oxygen admixture. Furthermore, an increase in the rf power up to about 15 W (depending on gas flow and mixture) leads to an increase in the effluent's atomic oxygen density, then reaching a constant level for higher powers. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/41/19/194006 |