Loading…

Temperature-dependent electron microscopy study of Au thin films on Si (1 0 0) with and without a native oxide layer as barrier at the interface

Real-time electron microscopy observation on morphological changes in gold nanostructures deposited on Si (1 0 0) surfaces as a function of annealing temperatures has been reported. Two types of interfaces with silicon substrates were used prior to gold thin film deposition: (i) without native oxide...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. D, Applied physics Applied physics, 2011-03, Vol.44 (11), p.115301
Main Authors: Rath, A, Dash, J K, Juluri, R R, Rosenauer, A, Satyam, P V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Real-time electron microscopy observation on morphological changes in gold nanostructures deposited on Si (1 0 0) surfaces as a function of annealing temperatures has been reported. Two types of interfaces with silicon substrates were used prior to gold thin film deposition: (i) without native oxide and on ultra-clean reconstructed Si surfaces and (ii) with native oxide covered Si surfaces. For ≈2.0 nm thick Au films deposited on reconstructed Si (1 0 0) surfaces using the molecular beam epitaxy method under ultra-high vacuum conditions, aligned four-fold symmetric nanogold silicide structures formed at relatively lower temperatures (compared with the one with native oxide at the interface). For this system, 82% of the nanostructures were found to be nanorectangle-like structures with an average length of ≈27 nm and aspect ratio of 1.13 at ≈700 °C. For ≈5.0 nm thick Au films deposited on Si (1 0 0) surface with native oxide at the interface, the formation of a rectangular structure was observed at higher temperatures (≈850 °C). At these high temperatures, desorption of gold silicide followed the symmetry of the substrate. Native oxide at the interface was found to act like a barrier for the inter-diffusion phenomena. Structural characterization was carried out using advanced electron microscopy methods.
ISSN:0022-3727
1361-6463
DOI:10.1088/0022-3727/44/11/115301