Loading…
Particle confinement property in the cusp-mirror field of a compact fusion reactor
The cusp-mirror magnetic structure in a compact fusion reactor (CFR) is investigated to understand the properties of the particle confinement for the first time. Compared with a cascade magnetic mirror device, its advanced performance is shown by means of test particle simulations. Some interesting...
Saved in:
Published in: | Physica scripta 2016-09, Vol.91 (9), p.95604 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The cusp-mirror magnetic structure in a compact fusion reactor (CFR) is investigated to understand the properties of the particle confinement for the first time. Compared with a cascade magnetic mirror device, its advanced performance is shown by means of test particle simulations. Some interesting results are obtained as follows: the adiabatic region and non-adiabatic region are found in the CFR's magnetic configuration. In the non-adiabatic region, due to the magnetic field-free space existing, the ions are scattered stochastically and are not directly guided into the loss cone, unlike the particles around the fixed magnetic lines in the adiabatic region, which decrease the ion loss fraction. The CFR's configuration, combining advantages of cusp-magnetic configuration and mirror-magnetic configuration, leads to confine particles longer than cascade magnetic mirror's. This phenomenon may be relevant to the construction of advanced magnetic-confinement devices. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/0031-8949/91/9/095604 |