Loading…

Determination of average glandular dose with modern mammography units for two large groups of patients

Until recently, for mammography Mo anode-Mo filter x-ray tube assemblies were almost exclusively used. Modern mammography units provide the possibility to employ a variety of anode-filter combinations with the aim of adapting the x-ray spectrum to compressed breast thickness and composition. The pre...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 1997-04, Vol.42 (4), p.651-671
Main Authors: Klein, R, Aichinger, H, Dierker, J, Jansen, J T M, Joite-Barfuß, S, Säbel, M, Schulz-Wendtland, R, Zoetelief, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Until recently, for mammography Mo anode-Mo filter x-ray tube assemblies were almost exclusively used. Modern mammography units provide the possibility to employ a variety of anode-filter combinations with the aim of adapting the x-ray spectrum to compressed breast thickness and composition. The present contribution provides information on the radiation exposure of two large groups of patients (one of 1678 and one of 945 women) who were mammographed with modern x-ray equipment, and on the dosimetry necessary for the evaluation. For dosimetric purposes spectral information is essential. X-ray spectra have been determined for various anode-filter combinations from measurements with a Ge detector. Based on these spectra, conversion factors from air kerma free in air to average glandular dose (g factors) have been calculated for different anode-filter combinations, compressed breast thickness ranging from 2 to 9 cm and breast compositions varying from 0 to 100% glandular tissue. Determinations of various quantities, including entrance surface air kerma (ESAK), tube output, tube loading (TL), fraction of glandular tissue (FGL) and compressed breast thickness, were made during actual mammography. Average glandular dose (AGD) was determined using g factors corrected for tissue composition as well as g values for standard breast composition, i.e. 50% adipose tissue and 50% glandular tissue by mass. It is shown that, on average, the influence of the actual breast composition causes variations of the order of about 15%. For group 1 and group 2, the mean values of average glandular dose (using g factors corrected for tissue composition) were 1.59 and 2.07 mGy respectively. The number of exposures per woman was on average 3.4 and 3.6 respectively. The mean value of compressed breast thickness was 55.9 and 50.8 mm respectively. The mean age of group 1 was 53.6 years (for group 2 the age was not recorded). The fraction by mass of glandular tissue FGL decrease with increasing compressed breast thickness and age of patient (from 75% at 25 mm to 20% at 80 mm, and from 65% at 20 years to 30% at 75 years). For a medium-sized breast, i.e. a compressed breast thickness of 55 mm, FGL is about 35%, indicating that the standard mix (FGL = 50%) might need some modification, particularly because of additional evidence from another investigation with similar results on FGL.
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/42/4/004