Loading…
Three-Dimensional Quantum State Transferring Between Two Remote Atoms by Adiabatic Passage under Dissipation
Recently, Zhou et al. [Phys. Rev. A 79 (2009) 044304] proposed a scheme for transferring three-dimensional quantum states between remote atomic qubits confined in cavities connected by fibers through adiabatic passage. In order to avoid the decoherence due to spontaneous emission, Zhou et al. utiliz...
Saved in:
Published in: | Communications in theoretical physics 2010-07, Vol.54 (7), p.107-111, Article 107 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, Zhou et al. [Phys. Rev. A 79 (2009) 044304] proposed a scheme for transferring three-dimensional quantum states between remote atomic qubits confined in cavities connected by fibers through adiabatic passage. In order to avoid the decoherence due to spontaneous emission, Zhou et al. utilized the large detuning atom-field interaction. In the present paper, we discuss the influence of dissipation on the scheme in both the resonant atom-field interaction case and the large detuning case. We numerically analyze the success probability and the transferring fidelity. It is shown that the resonant case is a preferable choice for the technique of the stimulated Raman adiabatic passage (STIRAP) due to the shorter operation time and the smaller probability of dissipation. |
---|---|
ISSN: | 0253-6102 |
DOI: | 10.1088/0253-6102/54/1/21 |