Loading…

Repulsive Polarons in One-Dimensional Fermi Gases

Using the variational method, we study the properties of a spin-down impurity immersed in a one-dimensional (1D) spin-up Fermi sea. With repulsive interactions between them, the impurity is dressed up by surrounding particles in Fermi sea and forms a polaron. We clearly calculate the binding energy,...

Full description

Saved in:
Bibliographic Details
Published in:Communications in theoretical physics 2019-05, Vol.71 (5), p.617
Main Authors: Song, Ya-Dong, Barthwal, Sachin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using the variational method, we study the properties of a spin-down impurity immersed in a one-dimensional (1D) spin-up Fermi sea. With repulsive interactions between them, the impurity is dressed up by surrounding particles in Fermi sea and forms a polaron. We clearly calculate the binding energy, effective mass, momentum distribution, Tan contact, and pair correlation. Even in strong repulsive regimes, the results can agree with the exact Bethe Ansatz results. The repulsive polaron energy E + is below Fermi energy E F and no negative effective masses are found in whole interaction regimes, unequal masses polarons are also calculated. We show a clear momentum distribution and calculate the Tan contact from three different aspects. Furthermore, we explore the particle-hole excitation and find that the hole terms in Fermi sea have a great influence on the polaron energy and contact in repulsive regime. These results show that the variational method can still be used effectively in 1D repulsive polaron system .
ISSN:0253-6102
1572-9494
DOI:10.1088/0253-6102/71/5/617