Loading…

First Principles Study on Mechanical Properties of Superhard α-Ga Boron

The mechanical properties and intrinsic hardness of the α-Ga boron phase (α-Ga-B) are studied by using the combination of first-principles calculations and a semiempirieal macroscopic hardness model. It is found that α- Ga-B is mechanically stable and possesses higher bulk/shear modulus as compared...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics letters 2015-02, Vol.32 (2), p.95-98
Main Authors: Xu, Yuan-Hui, Liu, Hui-Yun, Hao, Xian-Feng, Chen, Rong-Na, Gao, Fa-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanical properties and intrinsic hardness of the α-Ga boron phase (α-Ga-B) are studied by using the combination of first-principles calculations and a semiempirieal macroscopic hardness model. It is found that α- Ga-B is mechanically stable and possesses higher bulk/shear modulus as compared with γ-B28, a newly discovered high-pressure boron phase. The theoretical hardness of α-Ga-B is estimated to be 45 GPa, which is much higher than 38 GPa for γ-B28. The results strongly indicate that α-Ga-B is a potential superhard boron phase. To further obtain insight into the superhard nature of α-Ga-B, we simulate stress-strain curves under tensile and shear deformation. Meanwhile, the microscopic mechanism driving the tensile and shear deformation modes in α-Ga-B is discussed in detail.
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/32/2/026101