Loading…
RKKY interaction in AB-stacked multilayer graphene
The RKKY interaction between two magnetic impurities absorbed on the surface layer of half-filled AB-stacked multilayer graphene (ABSMLG) is theoretically studied based on the lattice Green's function technique. In comparison with the case of monolayer graphene, the RKKY interaction in such mul...
Saved in:
Published in: | Journal of physics. Condensed matter 2012-05, Vol.24 (20), p.206003-206003 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The RKKY interaction between two magnetic impurities absorbed on the surface layer of half-filled AB-stacked multilayer graphene (ABSMLG) is theoretically studied based on the lattice Green's function technique. In comparison with the case of monolayer graphene, the RKKY interaction in such multilayer graphene presents distinct properties in some aspects. Firstly, from the numerical results, we find that the thickness of the ABSMLG influences the RKKY interaction in a complicated manner, depending on the odd/even parity of the number of layers and the sublattice attribution of the positions of the two magnetic impurities. Then, we derive the asymptotic expressions of the RKKY interactions in ABSMLG in the long-distance limit. For even-layered ABSMLG, we find that the RKKY interactions of the 1A-1A, 1B-1A and 1B-1B couplings fall off as 1 R2, 1 R4 and 1 R6 (1A and 1B stand for, respectively, the sublattice points in the surface layer, which are positioned directly on the plaquette and on a lattice point of the layer underneath). On the other hand, in odd-layered ABSMLG, the decays of these interactions follow the 1 R2, 1 R3 and 1 R3 power laws respectively. In addition, we also find that these analytical expressions are quantitatively valid to describe the RKKY interaction in ABSMLG when the distance between the two magnetic impurities is larger than the lattice constant of graphene by one order of magnitude. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/24/20/206003 |