Loading…

Lattice dynamics of coesite

The lattice dynamics of coesite has been studied by a combination of diffuse x-ray scattering, inelastic x-ray scattering and ab initio lattice dynamics calculations. The combined technique gives access to the full lattice dynamics in the harmonic description and thus eventually provides detailed in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2013-07, Vol.25 (27), p.275401-275401
Main Authors: Wehinger, Björn, Bosak, Alexeï, Chumakov, Aleksandr, Mirone, Alessandro, Winkler, Björn, Dubrovinsky, Leonid, Dubrovinskaia, Natalia, Brazhkin, Vadim, Dyuzheva, Tatiana, Krisch, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The lattice dynamics of coesite has been studied by a combination of diffuse x-ray scattering, inelastic x-ray scattering and ab initio lattice dynamics calculations. The combined technique gives access to the full lattice dynamics in the harmonic description and thus eventually provides detailed information on the elastic properties, the stability and metastability of crystalline systems. The experimentally validated calculation was used for the investigation of the eigenvectors, mode character and their contribution to the density of vibrational states. High-symmetry sections of the reciprocal space distribution of diffuse scattering and inelastic x-ray scattering spectra as well as the density of vibrational states and the dispersion relation are reported and compared to the calculation. A critical point at the zone boundary is found to contribute strongly to the main peak of the low-energy part in the density of vibrational states. Comparison with the most abundant SiO2 polymorph-α-quartz-reveals similarities and distinct differences in the low-energy vibrational properties.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/25/27/275401