Loading…
A new phase of phosphorus: the missed tricycle type red phosphorene
We predict a new two-dimensional allotrope of phosphorus, which we call red phosphorene, by restructuring the segments of the previously proposed blue and black phosphorenes. Its atomic and electronic structures as well as the thermodynamic and dynamic stabilities are systematically studied by first...
Saved in:
Published in: | Journal of physics. Condensed matter 2015-07, Vol.27 (26), p.265301-265301 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We predict a new two-dimensional allotrope of phosphorus, which we call red phosphorene, by restructuring the segments of the previously proposed blue and black phosphorenes. Its atomic and electronic structures as well as the thermodynamic and dynamic stabilities are systematically studied by first-principles calculations. The results indicate that the red phosphorene is dynamically stable and possesses remarkably thermodynamical stability comparable to that of the black one. Because of the sp3-hybridization and the formation of a localized lone pair, red phosphorene is a semiconductor with an indirect band gap of about 1.96 eV, which can be effectively modulated by in-plane strains due to its wave-like configuration. We find that the red, black and blue phosphorenes show evident distinction in their layer thicknesses, surface work functions, and possible colors, based on which one can distinguish them in future experiments. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/27/26/265301 |