Loading…
The role of three-nucleon forces and many-body processes in nuclear pairing
We present microscopic valence-shell calculations of pairing gaps in the calcium isotopes, focusing on the role of three-nucleon (3N) forces and many-body processes. In most cases, we find a reduction in pairing strength when the leading chiral 3N forces are included, compared to results with low-mo...
Saved in:
Published in: | Journal of physics. G, Nuclear and particle physics Nuclear and particle physics, 2013-07, Vol.40 (7), p.75105-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present microscopic valence-shell calculations of pairing gaps in the calcium isotopes, focusing on the role of three-nucleon (3N) forces and many-body processes. In most cases, we find a reduction in pairing strength when the leading chiral 3N forces are included, compared to results with low-momentum two-nucleon (NN) interactions only. This is in agreement with a recent energy density functional study. At the NN level, calculations that include particle-particle and hole-hole ladder contributions lead to smaller pairing gaps compared with experiment. When particle-hole contributions as well as the normal-ordered one- and two-body parts of 3N forces are consistently included to third order, we find reasonable agreement with experimental three-point mass differences. This highlights the important role of 3N forces and many-body processes for pairing in nuclei. Finally, we relate pairing gaps to the evolution of nuclear structure in neutron-rich calcium isotopes and study the predictions for the 2+ excitation energies, in particular for 54Ca. |
---|---|
ISSN: | 0954-3899 1361-6471 |
DOI: | 10.1088/0954-3899/40/7/075105 |